472 research outputs found

    A global assessment of the drivers of threatened terrestrial species richness

    Get PDF
    High numbers of threatened species might be expected to occur where overall species richness is also high; however, this explains only a proportion of the global variation in threatened species richness. Understanding why many areas have more or fewer threatened species than would be expected given their species richness, and whether that is consistent across taxa, is essential for identifying global conservation priorities. Here, we show that, after controlling for species richness, environmental factors, such as temperature and insularity, are typically more important than human impacts for explaining spatial variation in global threatened species richness. Human impacts, nevertheless, have an important role, with relationships varying between vertebrate groups and zoogeographic regions. Understanding this variation provides a framework for establishing global conservation priorities, identifying those regions where species are inherently more vulnerable to the effects of threatening human processes, and forecasting how threatened species might be distributed in a changing world

    Prey selection by an apex predator : the importance of sampling uncertainty.

    Get PDF
    The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection. Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly's standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies

    Exapting exaptation

    Get PDF
    The term exaptation was introduced to encourage biologists to consider alternatives to adaptation to explain the origins of traits. Here, we discuss why exaptation has proved more successful in technological than biological contexts, and propose a revised definition of exaptation applicable to both genetic and cultural evolution

    Innovations in Camera Trapping Technology and Approaches: The Integration of Citizen Science and Artificial Intelligence

    Get PDF
    Camera trapping has become an increasingly reliable and mainstream tool for surveying a diversity of wildlife species. Concurrent with this has been an increasing effort to involve the wider public in the research process, in an approach known as ‘citizen science’. To date, millions of people have contributed to research across a wide variety of disciplines as a result. Although their value for public engagement was recognised early on, camera traps were initially ill‐suited for citizen science. As camera trap technology has evolved, cameras have become more user‐friendly and the enormous quantities of data they now collect has led researchers to seek assistance in classifying footage. This has now made camera trap research a prime candidate for citizen science, as reflected by the large number of camera trap projects now integrating public participation. Researchers are also turning to Artificial Intelligence (AI) to assist with classification of footage. Although this rapidly‐advancing field is already proving a useful tool, accuracy is variable and AI does not provide the social and engagement benefits associated with citizen science approaches. We propose, as a solution, more efforts to combine citizen science with AI to improve classification accuracy and efficiency while maintaining public involvement

    Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds

    Get PDF
    Aim The conservation value of sites is often based on species richness (SR).However, metrics of phylogenetic diversity (PD) reflect a community’s evolu-tionary potential and reveal the potential for additional conservation valueabove that based purely on SR. Although PD is typically correlated with SR,localized differences in this relationship have been found in different taxa.Here, we explore geographical variation in global avian PD. We identify wherePD is higher or lower than expected (from SR) and explore correlates of thosedifferences, to find communities with high irreplaceability, in terms of theuniqueness of evolutionary histories.Location Global terrestrial.Methods Using comprehensive avian phylogenies and global distributionaldata for all extant birds, we calculated SR and Faith’s PD, a widely appliedmeasure of community PD, across the terrestrial world. We modelled the rela-tionship between avian PD for terrestrial birds and its potential environmentalcorrelates. Analyses were conducted at a global scale and also for individualbiogeographical realms. Potential explanatory variables of PD included SR,long-term climate stability, climatic diversity (using altitudinal range as aproxy), habitat diversity and proximity to neighbouring realms.Results We identified areas of high and low relative PD (rPD; PD relative tothat expected given SR). Areas of high rPD were associated with deserts andislands, while areas of low rPD were associated with historical glaciation. Ourresults suggest that rPD is correlated with different environmental variables indifferent parts of the world.Main conclusions There is geographical variation in avian rPD, much ofwhich can be explained by putative drivers. However, the importance of thesedrivers shows pronounced regional variation. Moreover, the variation in avianrPD differs substantially from patterns found for mammals and amphibians.We suggest that PD adds additional insights about the irreplaceability of com-munities to conventional metrics of biodiversity based on SR, and could beusefully included in assessments of site valuation and prioritizatio

    Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration

    Get PDF
    Background: Tri-axial accelerometers are frequently deployed on terrestrial quadrupedal mammals using collars, because they are easy to fit and are thought to have minimal impact on the subject. Collar-attached devices are not fixed to the body and can move independently of the body. This may result in inaccurate measures of acceleration, reducing the accuracy of measured body movement. We determined the effect of collar size and collar weight on acceleration measured by a collar-mounted accelerometer on a quadruped mammal. The aim was to suggest best practice for sizes and weights of collars on which to deploy tri-axial accelerometers. Using pygmy goats, Capra aegagrus hircus, which were trained to walk at different speeds (0.8–3.0 km/h) on a treadmill, we measured body acceleration using a collar-mounted tri-axial accelerometer, with different collar sizes (individual neck circumference + 1 cm to + 9 cm) and collar weight (0.4% to 1.2% of individual weight). Results: There was a significant effect of collar size, collar weight and walking speed on measured acceleration. Measured acceleration was less accurate and more variable when collars were looser and heavier. To measure body acceleration more accurately, we found that collar size should be within 5 cm or 16% of an individual’s neck circumference when it was heavy (up to 1.2% of animal’s body weight) or within 7 cm (33%) of neck circumference if the collar was light (up to 0.6% of animal body weight). Conclusion: We suggest that not only reporting collar size and weight for welfare purposes, but it is also important to consider these aspects for scientific rigour, to ensure data are collected as accurately as possible. We provide guidelines for researchers fitting collar-attached devices to ensure a higher degree of accuracy of recorded body acceleration

    Demonstrating frequency-dependent transmission of sarcoptic mange in red foxes

    Get PDF
    Understanding the relationship between disease transmission and host density is essential for predicting disease spread and control. Using long-term data on sarcoptic mange in a red fox Vulpes vulpes population, we tested long-held assumptions of density- and frequency-dependent direct disease transmission. We also assessed the role of indirect transmission. Contrary to assumptions typical of epidemiological models, mange dynamics are better explained by frequency-dependent disease transmission than by density-dependent transmission in this canid. We found no support for indirect transmission. We present the first estimates of R0 and age-specific transmission coefficients for mange in foxes. These parameters are important for managing this poorly understood but highly contagious and economically damaging disease

    Camera trap distance sampling for terrestrial mammal population monitoring: lessons learnt from a UK case study

    Get PDF
    Accurate and precise density estimates are crucial for effective species management and conservation. However, efficient monitoring of mammal densities over large spatial and temporal scales is challenging. In the United Kingdom, published density estimates for many mammals, including species considered to be common, are imprecise. Camera trap distance sampling (CTDS) can estimate densities of multiple species at a time and has been used successfully in a small number of studies. However, CTDS has typically been used over relatively homogeneous landscapes, often over large time scales, making monitoring changes (by repeating surveys) difficult. In this study, we deployed camera traps at 109 sites across an area of 2725 km2 of varied habitat in North-East England, United Kingdom. The 4-month survey generated 51 447 photos of wild mammal species. Data were sufficient for us to use CTDS to estimate the densities of eight mammal species across the whole-survey area and within four specific habitats. Both survey-wide and habitat-specific density estimates largely fell within previously published density ranges and our estimates were amongst the most precise produced for these species to date. Lower precision for some species was typically due to animals being missed by the camera at certain distances, highlighting the need for careful consideration of practical and methodological decisions, such as how high to set cameras and where to left-truncate data. Although CTDS is a promising methodology for determining densities of multiple species from one survey, species-specific decisions are still required and these cannot always be generalized across species types and locations. Taking the United Kingdom as a case study, our study highlights the potential for CTDS to be used on a national scale, although the scale of the task suggests that it would need to be integrated with a citizen science approach

    Multi-imaging x-ray streak camera for ultrahigh-speed two dimensional x-ray imaging of imploded core plasmas(invited)

    Full text link
    Copyright 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, 75(10), 3921-3925, 2004 and may be found at http://dx.doi.org/10.1063/1.178924
    corecore