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Summary 21 

Understanding the relationship between disease transmission and host density is essential for 22 

predicting disease spread and control. Using long-term data on sarcoptic mange in a red fox 23 

Vulpes vulpes population, we tested long-held assumptions of density- and frequency-24 

dependent direct disease transmission. We also assessed the role of indirect transmission. 25 

Contrary to assumptions typical of epidemiological models, mange dynamics are better 26 

explained by frequency-dependent disease transmission than by density-dependent 27 

transmission in this canid. We found no support for indirect transmission. We present the first 28 

estimates of R0 and age-specific transmission coefficients for mange in foxes. These 29 

parameters are important for managing this poorly understood but highly contagious and 30 

economically damaging disease. 31 

 32 

Keywords: Age-specific infection, basic reproductive number, frequency-dependent 33 

transmission, indirect transmission, SEI model.34 
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Introduction 35 

Rates of disease transmission are typically assumed to increase with host density for 36 

most directly transmitted infections but to be unrelated to density for sexually and indirectly 37 

transmitted diseases [1]. Increasingly, studies are challenging this assumption, suggesting that 38 

behaviours mediating contact rates do not always show simple relationships with host density 39 

[2]. Many diseases are also transmitted indirectly through contact with contaminated 40 

substances known as fomites, a pathway only recently incorporated into wildlife disease 41 

models [3, 4]. Insight into pathogen spread is informative for controlling disease: non-linear 42 

dynamics can result in ineffective culling [5]; disease-induced extinction risk increases when 43 

transmission is density-independent [6]; and indirect transmission can promote disease 44 

persistence [3]. Given the threat of emerging infectious diseases, the possibility of domestic-45 

wildlife cross-infection and the cost of disease control [7, 8], understanding transmission 46 

mechanisms is clearly important.  47 

Sarcoptic mange, caused by the highly contagious mite Sarcoptes scabiei, affects over 48 

100 domestic and wild mammalian species [9]. Mange is a potential emerging disease [7], 49 

posing a risk for endangered species and domestic-wildlife infection [8]. The economic costs 50 

of controlling mange are substantial [10]. Despite its importance, fundamental aspects of 51 

mange epidemiology, including genetic resistance and transmission dynamics in wild 52 

populations, are poorly understood [9]. Further, mange occurs in a range of species exhibiting 53 

different levels of sociality [11-14]. 54 

Mange epizootics have caused significant declines in red fox Vulpes vulpes 55 

populations worldwide [11, 15, 16]. Previous mange models have only considered direct, 56 

density-dependent transmission [12, 17] but off-host mite survival [9] and low inter-group 57 

contact in foxes [18] suggest that indirect transmission is likely. Moreover, the social nature 58 

of foxes suggests that the traditional assumptions of density- and frequency-dependent 59 

disease transmission might be complicated [19]. We developed a model of mange spread and 60 

fitted it to a long-term dataset. This model allowed us to: (i) estimate epidemiological 61 

parameters; (ii) explore whether transmission is frequency- or density-dependent; and (iii) 62 

assess the potential role of indirect transmission. 63 

 64 

Methods 65 

An urban fox population in Bristol, UK, experienced a mange epizootic [20], followed by an 66 

enzootic phase [11], during a four-decade long study (1977 to present). Pre-epizootic spring 67 

population density (adults and juveniles) was exceptionally high (58.3 individuals km-2) and 68 
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post-epizootic density was reduced by >95% [20]. Monthly mange prevalence was 69 

determined for juveniles (<1 year old) and adults (>1 year old), given observed age-related 70 

patterns (see electronic supplementary material (ESM) for full details).  71 

Using an age-structured Susceptible-Exposed-Infected (SEI) model, we tested two 72 

forms of direct transmission: density- and frequency-dependent transmission (MD and MF, 73 

respectively, Figure 1) (see ESM for full model details). Two epidemiological parameters, the 74 

transmission coefficient, β, and infectious period, γ, were estimated by fitting the models to 75 

data. To account for potential age-specific variation in prevalence between juveniles (j) and 76 

adults (a), the SEI model included age-specific transmission, denoted by the coefficients βjj 77 

and βaa. The exposed class was included to incorporate the time taken between foxes 78 

becoming exposed to the mites and becoming infectious, typically 30 days (Table 1). Mean 79 

time to disease-induced mortality (α) is estimated to be 100 days (Table 1) which, with a life-80 

expectancy without the disease of 2 years, translates to a 7-fold increase in mortality rate due 81 

to mange. Recovered individuals were assumed to return directly to the susceptible class 82 

because re-infection of individuals was observed (S. Harris unpublished data). Host 83 

demography was modelled assuming a fixed background per capita mortality rate (Table 1) 84 

and an annual birth pulse. The total population density (N) was reset annually to an observed 85 

post-breeding density (Nk), to simulate the birth pulse, with susceptible juveniles (Sbj) 86 

introduced into the population each year, t (i.e. Sbj = Nk(t) - N).  87 

In models MDI and MFI, indirect transmission was combined with direct transmission 88 

(Figure 1), given that indirect pathways are unlikely to be the sole transmission mechanism. 89 

An additional compartment (F) followed mite density on fomites and the transmission 90 

coefficient, βf, described infection through the contact of susceptible individuals with free-91 

living mites on infected substrates. Due to paucity of data, the rate that mites are released into 92 

the environment, ω, was a fitted parameter, assumed to depend on the reproductive rate of the 93 

mites and individual parasite loads.  94 

Parameter estimates were determined using maximum likelihood (see ESM for full 95 

methods) in R 3.1.0 (www.r-project.org). Where possible, initial parameter values were 96 

estimated from the literature [11, 20, 21] (Table 1). To determine the performance of the 97 

disease transmission models, predicted dynamics were compared with a null model with 98 

time-invariant disease prevalence. Evidence for inter-annual variation in post-breeding 99 

density, density- versus frequency-dependent transmission, and the role of indirect 100 

transmission were assessed by performing model selection using Akaike’s Information 101 

Criterion (AIC) [22]. The basic reproductive number, R0, determining the probability of 102 

http://www.r-project.org/
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disease invasion, was calculated for the best AIC model using a ‘next generation matrix’ [23] 103 

(see ESM).  104 

 105 

Results 106 

Age-related patterns in the monthly prevalence of mange (Figure S2) suggest some 107 

seasonality, particularly in juveniles. Prevalence data were overdispersed with respect to the 108 

binomial distribution (variance inflation factor, = 2.79) and, therefore, all model likelihoods 109 

were calculated using the beta-binomial distribution [22]. SEI models consistently 110 

outperformed the null model (Table S1). AIC values for the null and all eight time-varying 111 

disease models are presented in the ESM (Table S1). The most parsimonious models (MF and 112 

MFI) indicated strong support for frequency-dependent mange transmission in the Bristol fox 113 

population. The frequency-dependent model incorporating indirect transmission (MFI) 114 

performed well but model comparison showed that the extra parameters did not justify the 115 

increased complexity relative to model MF (Figure 2a,b) [22]. MF captured observed 116 

prevalence patterns in both juveniles (Figure 2a) and adults (Figure 2b); the discrepancy 117 

between empirical and observed juvenile prevalence from May to July is probably due to the 118 

window of offspring birth being rather wider in reality than in our model. Density-dependent 119 

models did not perform well (Figure 2c,d), overestimating juvenile prevalence from April to 120 

June. 121 

The 95% confidence intervals (CIs) of R0 are all above one, consistent with mange 122 

persistence in the population (Table 2). The best estimate of βʹjj was ten times higher than βʹaa, 123 

with no overlap between CIs (Table 2), suggesting a key role of juveniles for mange 124 

transmission. The wide CIs and the discrepancy between the best model estimate of γ (Table 125 

2, corresponding to 30 days) and the estimate from the literature [21], may reflect trade-offs 126 

between γ and unknown parameters. 127 

 128 

Discussion  129 

This study presents the first published model of mange transmission dynamics in foxes. The 130 

estimate of R0 is consistent with mange invading the Bristol fox population and is similar in 131 

magnitude to that estimated for mange in chamois Rupicapra rupicapra [R0=4.8-5.1; 12].  132 

In other fox populations, the relationship between mange and density is unclear [11, 133 

15, 24].  However, contrary to expectation, frequency-dependent transmission of mange 134 

appears most probable in the Bristol fox population, implying that the per capita rate of 135 

infectious contact remains constant despite increases in densities of infected individuals. This 136 
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is consistent with fox behaviour, since opportunities for infectious contact may be limited due 137 

to low inter- and intra-group encounters [18, 25]. Density-dependent models particularly 138 

overestimated juvenile disease prevalence post-birth, when movement is limited. The 139 

minimal effect of density on mange is supported by the observation that mange persists at 140 

low fox densities [20], because frequency-dependent diseases can be sustained at lower host 141 

densities than density-dependent diseases [26]. The contrast between our results and those of 142 

assessments of mange transmission in chamois, a species which does not show complex 143 

group structuring, and for which density-dependent transmission of mange was well-144 

supported [12], emphasises the role of sociality in mediating disease dynamics within a 145 

population [1, 2, 5, 19]. Further work is needed to examine how transmission mechanisms 146 

vary across different species affected by the same disease.  147 

We found no support for indirect transmission. This could reflect the limited role of 148 

this pathway between social groups in the study area: although inter-group den sharing 149 

promoted mange transmission in a Russian fox population [16], this behaviour may be less 150 

frequent in the Bristol population. Poor support for indirect transmission also suggests poor 151 

support for the importance of alternative hosts. In single host – single pathogen models, 152 

alternative hosts may appear to play a role equivalent to indirect transmission, especially 153 

where the vectors are host generalists (as in the case of mange mites). However, in Bristol, 154 

there was only evidence of mange transmission from foxes to dogs during the initial epizootic 155 

phase, and no evidence of transmission from dogs to foxes (S. Harris unpublished data). 156 

Thus, consistent with our findings on indirect transmission, the role of alternative hosts is 157 

likely to be negligible. These findings should recognize, however, that population-level SEI 158 

models do not discriminate between inter- and intra-group encounter rates and, thus, could 159 

overestimate the importance of direct transmission between individuals of the focal species. 160 

Simulations of individual-level behaviour may provide further insight into the relative 161 

importance of transmission mechanisms.   162 

The predicted age-specific prevalence may reflect the restricted post-birth movement 163 

of juveniles [27] and the subsequent pulse of infection driven by the naïve source of 164 

susceptible juveniles. The high predicted age-specific transmission rate suggests either that 165 

juveniles are more prone to infection given contact (owing to less effective immune systems 166 

and increased nutritional stress from independent foraging) and/or that they encounter 167 

infected individuals more often than adults (owing to life-stage specific movement patterns); 168 

however, combining data on all individuals younger than one may mask underlying 169 

mechanisms. Mange is probably maintained by older individuals since adults have a longer 170 
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time to become infected compared to the short disease duration in younger individuals. Such 171 

insight into age-specific transmission is important for disease control. 172 

This study provides the first estimates of stage-dependent transmission rates and R0 173 

for mange in foxes and suggests that the dominant transmission mechanism is frequency-174 

dependent. These results indicate the importance of sociality in mange transmission and 175 

highlight the need to test long-standing assumptions of disease transmission.  176 

 177 

Acknowledgements  178 

We thank Durham University and the Dulverton Trust for financial support, and the Durham 179 

University Ecology Group for insightful discussions. 180 

 181 

References  182 

1. McCallum H., Barlow N., Hone J. 2001 How should pathogen transmission be 183 

modelled? Trends Ecol Evol 16, 295-300 184 

2. Smith M.J., Telfer S., Kallio E.R., Burthe S., Cook A.R., Lambin X., Begon M. 2009 185 

Host–pathogen time series data in wildlife support a transmission function between density 186 

and frequency dependence. Proc Natl Acad Sci USA 106, 7905-7909 187 

3. Rohani P., Breban R., Stallknecht D.E., Drake J.M. 2009 Environmental transmission 188 

of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc 189 

Natl Acad Sci USA 106, 10365-10369 190 

4. Miller M.W., Hobbs N.T., Tavener S.J. 2006 Dynamics of prion disease transmission 191 

in mule deer. Ecol Appl 16, 2208-2214 192 

5. Morters M.K., Restif O., Hampson K., Cleaveland S., Wood J.L.N., Conlan A.J.K. 193 

2013 Evidence-based control of canine rabies: a critical review of population density 194 

reduction. J Anim Ecol 82, 6-14 195 

6. McCallum H., Jones M., Hawkins C., Hamede R., Lachish S., Sinn D.L., Beeton N., 196 

Lazenby B. 2009 Transmission dynamics of Tasmanian devil facial tumor disease may lead 197 

to disease-induced extinction. Ecology 90, 3379–3392 198 

7. Daszak P., Cunningham A.A., Hyatt A.D. 2000 Emerging infectious diseases of 199 

wildlife - threats to biodiversity and human health. Science 287, 443-449 200 



 

 

 8 

8. Smith K.F., Acevedo-Whitehouse K., Pedersen A.B. 2009 The role of infectious 201 

diseases in biological conservation. Anim Conserv 12, 1-12.(10.1111/j.1469-202 

1795.2008.00228.x) 203 

9. Pence D.B., Ueckermann E. 2002 Sarcoptic mange in wildlife. Rev Sci Tech Off Int 204 

Epizoot 21, 385-398 205 

10. Dobson K.J., Cargill C.F. 1980 Epidemiology and economic consequence of sarcoptic 206 

mange in pigs. Proceedings of the 2nd International Symposium on Veterinary Epidemiology 207 

and Economics, International Symposia on Veterinary Epidemiology and Economics ISVEE 208 

May 1979, 401-407 International Symposia on Veterinary Epidemiology and Economics 209 

11. Soulsbury C.D., Iossa G., Baker P.J., Cole N.C., Funk S.M., Harris S. 2007 The 210 

impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. 211 

Mammal Rev 37, 278-296.(10.1111/j.1365-2907.2007.00101.x) 212 

12. Lunelli A. 2010 An SEI model for sarcoptic mange among chamois. J Biol Dyn 4, 140 213 

- 157 214 

13. Graczyk T.K., Mudakikwa A.B., Cranfield M.R., Eilenberger U. 2001 Hyperkeratotic 215 

mange caused by Sarcoptes scabiei (Acariformes : Sarcoptidae) in juvenile human-habituated 216 

mountain gorillas (Gorilla gorilla beringei). Parasitol Res 87, 1024-1028 217 

14. Kołodziej-Sobocińska M., Zalewski A., Kowalczyk R. 2014 Sarcoptic mange 218 

vulnerability in carnivores of the Białowieża Primeval Forest, Poland: underlying 219 

determinant factors. Ecol Res 29, 237-244 220 

15. Lindström E., Morner T. 1985 The spreading of sarcoptic mange among Swedish red 221 

foxes (Vulpes vulpes L) in relation to fox population dynamics. Rev Ecol Terr Vie 40, 211-222 

216 223 

16. Gerasimoff Y.A. 1958 Mange in wild foxes. Translation of Russian game reports 224 

Volume 3 (arctic and red foxes, 1951-55), 70-85. Canadian Department of Northern Affairs 225 

and National Resources, Ottawa,  226 

17. Leung B., Grenfell B.T. 2003 A spatial stochastic model simulating a scabies 227 

epidemic and coyote population dynamics. Ecol Model 166, 41-52.(10.1016/s0304-228 

3800(03)00117-0) 229 



 

 

 9 

18. White P.C.L., Harris S. 1994 Encounters between red foxes (Vulpes vulpes) - 230 

implications for territory maintenance, social cohesion and dispersal. J Anim Ecol 63, 315-231 

327 232 

19. Sterner R.T., Smith G.C. 2006 Modelling wildlife rabies: transmission, economics, 233 

and conservation. Biol Conserv 131, 163-179.(10.1016/j.biocon.2006.05.004) 234 

20. Baker P.J., Funk S.M., Harris S., White P.C.L. 2000 Flexible spatial organization of 235 

urban foxes, Vulpes vulpes, before and during an outbreak of sarcoptic mange. Anim Behav 236 

59, 127-146 237 

21. Newman T.J., Baker P.J., Harris S. 2002 Nutritional condition and survival of red 238 

foxes with sarcoptic mange. Can J Zool 80, 154-161.(10.1139/z01-216) 239 

22. Richards S.A. 2008 Dealing with overdispersed count data in applied ecology. J Appl 240 

Ecol 45, 218-227 241 

23. Diekmann O., Heesterbeek J.A.P., Roberts M.G. 2010 The construction of next-242 

generation matrices for compartmental epidemic models. J Royal Soc Interface 7, 873-885 243 

24. Gortázar C., Villafuerte R., Blanco J.C., Fernández-De-Luco D. 1998 Enzootic 244 

sarcoptic mange in red foxes in Spain. Z Jagdwiss 44, 251-256 245 

25. Giuggioli L., Potts J.R., Harris S. 2011 Animal interactions and the emergence of 246 

territoriality. PLoS Comp Biol 7, e1002008.(10.1371/journal.pcbi.1002008) 247 

26. Ryder J.J., Miller M.R., White A., Knell R.J., Boots M. 2007 Host-parasite population 248 

dynamics under combined frequency- and density-dependent transmission. Oikos 116, 2017-249 

2026.(10.1111/j.2007.0030-1299.15863.x) 250 

27. Robertson C.P.J., Baker P.J., Harris S. 2000 Ranging behaviour of juvenile red foxes 251 

and its implications for management. Acta Theriol 45, 525-535 252 

 253 

254 



 

 

 10 

Table 1. Definition of fitted and fixed parameters used in SEI models.  255 

 256 

Parameter Definition Fixed or fitted 

parameter 

βjj , βaa Age-specific density-dependent transmission (day- 1) a 

βʹjj , βʹaa Age-specific frequency-dependent transmission (individual- 1 

day- 1) 

a 

βf Indirect transmission (day- 1 per unit of fomite) (age-

invariant) 

a 

γ Infectious period = 1/ γ (day-1) a 

σ Latent period = 1/ σ (day-1) 30 days 

α Disease-induced mortality rate = 1/α (day-1) 100 days 

μj Juvenile per capita mortality probability (year-1)  0.3b 

μa Adult per capita mortality probability (year-1) 0.5b 

ω Per capita reproductive rate of mite on infected individuals 

(day-1) 

a 

ε Rate of loss of the pathogen in environment = 1/ε (day-1) 10 days 

S0j Initial density of susceptible juveniles (km-2) 21 

S0a Initial density of susceptible adults (km-2) 36 

I0j Initial density of infected juveniles (km-2) 0.01 

I0a Initial density of infected adults (km-2) 0.01 

F0 Initial density of fomites (normalised) 1 
 257 
a Fitted parameter 258 
bAnnual probabilities were converted to daily rates by –ln(μ)/360 259 
 260 
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Table 2. Estimated parameter values for the best-fitting model (95% CIs in parentheses 261 
estimated by bootstrapping 10,000 replicates, see ESM). See Table 1 for epidemiological 262 
parameter descriptions. 263 
 264 

Model βʹjj βʹaa γ Φa R0 

MF Frequency-dependent 0.340 

(0.164–

0.705) 

 0.030 

 (0.006–

0.151) 

0.039 

(0.029–

0.111) 

0.247 

(0.156–

0.392) 

2.67 

1.54 – 

5.12) 

 265 
a Dispersion parameter, φ, indicating that data are overdispersed. 266 
 267 
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Figure legends 268 

 269 

Figure 1. SEI compartment model diagram illustrating age-specific density-dependent direct 270 

transmission with host demography (MD). Indirect transmission and fomite dynamics are 271 

indicated in grey (MDI). Transmission terms in brackets are replaced with (β’aaSaIa + 272 

β’jaSaIj)/N and (β’jjSjIj + β’ajSjIa)/N for frequency-dependent models (MF and MFI) (Table 1 273 

provides parameter definitions). 274 

 275 

Figure 2. The predicted probability of infection (open circles) for (a and b) the frequency-276 

dependent model (MF), and for (c and d) the density-dependent model (MD), for juveniles 277 

(left panels) and adults (right panel), against the observed prevalence data (closed circles). 278 

Dotted lines indicate the predicted probability of infection for models including indirect 279 

transmission (MFI and MDI, respectively). 95% CIs were calculated from likelihood profiles. 280 
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Electronic Supplementary material (ESM): 

Demonstrating frequency-dependent transmission of sarcoptic mange in red foxes 

E. S. Devenish-Nelson, S. A. Richards, S. Harris, C. Soulsbury, P. A. Stephens 

 

ESM 1.1: Data 

In the UK, the Bristol fox population experienced a sarcoptic mange epizootic from 1994 to 1996; 

prevalence peaked in the autumn of 1995 when it was estimated that close to 100% of the population 

was infected [1]. At the start of the epizooty, the total (adults i.e. animals >1 year old and juveniles 

i.e. animals <1 year old) fox population density was 58.3 individuals km-2; this declined by >95% by 

the end of 1996 [1]. Population recovery was slow and mange has remained at enzootic levels since 

1996 [2]; by 2014, prevalence levels were very low (S. Harris unpublished data). Annual post-

breeding population densities [3, 4], were estimated from capture-mark-recapture data [e.g. 1]. Four 

years with missing estimates (1996, 1997, 2000, 2001) were determined by linear interpolation. 

Prevalence and mortality data used in this analysis were based on data collected from a 

14km2 area of suburban Bristol through the recapture of radio-collared or marked individuals, and 

recovery of fox carcasses, from 1994 to 2010 (n=1662 records; S. Harris unpublished data) 

[sampling protocols are described in 2, 5]. Mange diagnosis was classified according to the disease 

manifestation [for a review of clinical symptoms see 6]; class I and class II infections were defined 

as no evidence of, and presence of, hyperkeratotic mange, respectively [see 5]. Due to the small 

monthly sample sizes, class I and class II data were combined to obtain the number of infected 

individuals per month. Monthly prevalence was then calculated as the proportion of infected 

juveniles and adults respectively. Prevalence data were not sufficiently detailed to add a pre-

emergent age class. To determine uncertainty in the prevalence data, 95% confidence intervals were 

calculated from likelihood profiles. 

Mean monthly sample sizes for adults (2.61, SD ± 0.79, n = 502) and juveniles (5.53, SD ± 

1.30, n =1061) were consistent during the year (Figure S1), with the exception of a peak in juvenile 

capture and mortality records in the summer months, which reflects the newly mobile juveniles 

(Figure S1A). Juveniles were sampled (Figure S1A), on average, twice as frequently as adults 

(Error! Reference source not found.Figure S1B), reflecting the age distribution of the population. 

Mean sample sizes of infected individuals for monthly prevalence data were low for both age classes 

(adults 0.63, SD ± 0.28, n = 120; juveniles 0.99, SD ± 0.33, n = 191; Figure S2). Age-related patterns 

in the monthly prevalence of mange (Figure S2) suggest some seasonality, particularly in juveniles. 

Confidence intervals are wide, however, indicating substantial uncertainty in the data. 
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ESM 1.2: SEI models 

Although S. scabiei is conventionally classified as a macroparasite, because it displays several 

microparasite attributes (the small mites reproduce directly and rapidly on the host and are able to 

transfer directly between host individuals), a microparasite modelling approach was applied in this 

study to estimate the epidemiological parameters, β and γ, and compare pathways of mange 

transmission in foxes. An SEI model was used in which densities (N) of individuals in a given 

population are categorised into classes according to their disease status as susceptible (S), exposed 

(E), and infected (I) (i.e. N = S+E+I) (Figure 1). Two forms of direct transmission were modelled. 

Density-dependent transmission was the first direct mechanism modelled (MD). Here, the 

transmission rate is proportional to the densities of both susceptible and infected groups within the 

population (βSI), resulting in prevalence increasing linearly with the density of these two groups. The 

second mode of direct transmission, frequency-dependent (MF), assumes that the infection rate is 

dependent on the proportion of infective individuals in the population (βʹSI/N); thus, opportunities 

for contact between an infectious and susceptible individual are assumed to be independent of 

population size [7].  

Given that indirect pathways are unlikely to be the sole transmission mechanism of mange, 

Models MDI and MFI include both indirect transmission and direct transmission, with an additional 

compartment (F) following the densities of mites in the environment [8] (Figure 1). For analytical 

tractability, it was assumed that βf was not age-specific. Under average ambient conditions, all life 

stages of the mite can survive an average of 10 days off the host, but this can increase to several 

weeks if conditions are optimal [6]. The parameter ω, the rate that mites are released into the 

environment, had to be fitted because, although it is known that female mites produce 3-4 eggs per 

day, with an average life expectancy of 5 weeks [9], parasite loads and the rate at which mites are 

released from the host remain undetermined. 

Foxes breed annually and, for modelling purposes, it was assumed that all juveniles are born 

on April 1st (Harris & Smith 1987). Thus, for convenience, the total population density was reset 

annually to a post-breeding density (Nk), occurring in March because this process was modelled at 

the end of the month. In this way, a pulse of new susceptible individuals (Sbj) was introduced into the 

population each year (Sbj = Nk(t) - N). The post-breeding density Nk(t) was defined as the total 

(combined juvenile and adult) population density estimate for year t, based on an independent set of 

density data (S. Harris unpublished data).  

 

To account for potential age-specific variation in prevalence, for both density-and frequency-

dependent transmission, a “Who Acquires Infection From Whom” (WAIFM) transmission matrix 
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[10] was used to denote transmission from one class to another, e.g. for frequency-dependent 

transmission: 

𝛽ʹ = (
𝛽ʹ𝑗𝑗 𝛽ʹ𝑎𝑗

𝛽ʹ𝑗𝑎 𝛽ʹ𝑎𝑎
) ,         (S1) 

where j and a represent juveniles and adults respectively and βʹ is the frequency-dependent 

transmission coefficient. To reduce uncertainty in parameter estimates and to maintain analytical 

tractability, and because the addition of more complex contact rates was not supported by the data, it 

was assumed that juvenile-adult transmission, βʹ ja, was equal to juvenile-juvenile transmission, βʹjj, 

and that adult-juvenile transmission, βʹaj, equalled adult-adult transmission, βʹaa. Each year, at the 

time of the birth pulse, juveniles in a given disease state matured into adults of the corresponding 

disease class. The following ordinary differential equations (ODEs) describe disease dynamics 

between birth pulses according to the frequency-dependent SEI model (MF): 

𝑑𝑆𝑗

𝑑𝑡
= −𝜇𝑗𝑆𝑗 − (𝛽′

𝑗𝑗
𝐼𝑗 + 𝛽′

𝑎𝑗
𝐼𝑎)

𝑆𝑗

𝑁
+ 𝛾𝐼𝑗  

𝑑𝐸𝑗

𝑑𝑡
= −𝜇𝑗𝐸𝑗 − 𝜎𝐸𝑗+ (𝛽′

𝑗𝑗
𝐼𝑗 + 𝛽′

𝑎𝑗
𝐼𝑎)

𝑆𝑗

𝑁
 

𝑑𝐼𝑗

𝑑𝑡
= −(𝛼 + 𝜇𝑗)𝐼𝑗 + 𝜎𝐸𝑗 − 𝛾𝐼𝑗                                                                                     (S2) 

𝑑𝑆𝑎

𝑑𝑡
= −𝜇𝑎𝑆𝑎 − (𝛽′

𝑎𝑎
𝐼𝑎 + 𝛽′

𝑗𝑎
𝐼𝑗)

𝑆𝑎

𝑁
+ 𝛾𝐼𝑎  

𝑑𝐸𝑎

𝑑𝑡
= −𝜇𝑎𝐸𝑎 − 𝜎𝐸𝑎+ (𝛽′

𝑎𝑎
𝐼𝑎 + 𝛽′

𝑗𝑎
𝐼𝑗)

𝑆𝑎

𝑁
 

𝑑𝐼𝑎
𝑑𝑡

= −(𝛼 + 𝜇𝑎)𝐼𝑎 + 𝜎𝐸𝑎 − 𝛾𝐼𝑎, 

 

ESM 1.3: Parameter fitting and model selection 

The SEI model parameters were fitted to the prevalence data using maximum likelihood. This 

analysis is based on the assumption that the transmission rate, β, of mange in a population, N, of S 

susceptible individuals produces I infected individuals per day, given that E individuals were 

exposed to the mite and became infectious. The probability an individual in the population is 

infected, p, is given by I/N. Predictions of the model can be compared to empirical observations on 

the prevalence of infected individuals by considering the process of field data collection as a series of 

binomial trials. Let the months in the total time series be denoted by [m = 1, 2, 3, …, D]. Within a 

given month, each individual sampled can be considered as a trial, with the total number of 
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individuals sampled in each age class denoted nx. Assuming that the probability of becoming 

infected, px, is uniform among individuals sampled of age x, the number of infected individuals 

within an age class, yx, will follow a binomial distribution. Thus, the likelihood at time m that 

proportion px of either juveniles or adults in the population are infected, given that a random sample 

of nx individuals includes yx infectives, is: 

 𝐿(𝑝𝑥|𝑛𝑥, 𝑦𝑥) = (
𝑛𝑥

𝑦𝑥
) 𝑝𝑥

𝑦𝑥(1 − 𝑝𝑥) 
𝑛𝑥−𝑦𝑥.      (S3) 

Observed variation in the rate of infection can arise as a result of sampling error, including 

undiagnosed or misdiagnosed cases, or due to the effects of unmeasured factors such as individual 

variation in parasite load or susceptibility. If these sources of variation are unaccounted for and result 

in overdispersed data, then unnecessarily complex models can be selected when using information 

theoretic approaches because model precision will be overestimated [11, 12]. To measure the degree 

of dispersion in the data, the variance inflation factor, 𝑣̃, was estimated by dividing the variation in 

the observed data (saturated model, where the number of parameters equals the number of 

observations) by the variation in the most complex binomial model [11]. If overdispersion is present 

(𝑣̃ ≥ 2), a compound distribution can be fitted to the data instead [11]. For binomial data, an 

appropriate compound distribution is the beta-binomial distribution. This model assumes that 

variation in px across samples within a given time period is described by the beta distribution: 

𝑓(𝑝𝑥; 𝑝̅𝑥, ∅) =
Γ(𝑎+𝑏)

Γ(𝑎)Γ(𝑏)
𝑝𝑥

𝑎−1(1 − 𝑝𝑥) 
𝑏−1,       (S4) 

where the parameter φ quantifies the variation in px, 𝑝̅𝑥 is the mean probability of success, Γ(x) is the 

complete gamma function, a=𝑝̅𝑥 / φ, and b=(1-𝑝̅𝑥)/ φ. Substituting equation (S4) into equation (S3) 

gives the compound beta-binomial distribution. If θ is the set of model parameters required to 

calculate 𝑝̅𝑥 and the dispersion coefficient φ, then the likelihood of θ at time m can be calculated as: 

𝐿(𝛉|𝑛𝑥, 𝑦𝑥) =
Γ(𝑛𝑥+1)Γ(𝑎+𝑏)Γ(𝑦𝑥+𝑎)Γ(𝑛𝑥−𝑦𝑥+𝑏)

Γ(𝑦𝑥+1)Γ(𝑛𝑥−𝑦𝑥+1)Γ(𝑎)Γ(𝑏)Γ(𝑛𝑥+𝑎+𝑏)
.      (S5) 

Equation (S4) approximates the binomial distribution as the dispersion parameter, φ, 

approaches zero. The total log-likelihood of the model, defined by θ and given all the data, is then 

the log of equation (S5) summed over age classes j and a over the total time period, D:  

𝐿𝐿(𝛉|data) = ∑ {∑ (lnL[𝛉|𝑛𝑗𝑚, 𝑦𝑗𝑚])
𝑛𝑗

𝑗=1
+ ∑ (lnL[𝛉|𝑛𝑎𝑚, 𝑦𝑎𝑚])𝑛𝑎

𝑎=1 } .𝐷
𝑚=1    (S6) 
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To determine the ability of the disease transmission model to fit the data, it is useful to compare 

predicted dynamics with a null model in which disease prevalence is constant in time. A beta-

binomial null model (MH) was fitted which simply assumed that the probability a sampled individual 

in each age class was diseased was, on average, time-invariant (px = 𝑝̅𝑥). The ability of SEI models to 

capture patterns in the prevalence data was determined by comparing the likelihoods of the null 

model, MH, and those models that included disease parameters (MD, MF, MDI, MFI).  

In general, it is necessary to use a discrete approximation because epidemiological ODE 

models cannot be solved analytically due to their non-linear properties. Thus, to obtain prevalence 

patterns, px(m), predicted by each SEI model, the associated system of equations (eqn S2) was solved 

using the fourth-order Runge-Kutta method [13]. The set of model parameter values fitted to the 

monthly age-specific prevalence data for direct transmission were θ = {βjj, βaa, γ, φ} and θ = {βʹjj, 

βʹaa, γ, φ} for density- and frequency-dependent transmission respectively; for models that include 

indirect transmission, the models were defined by θ = {βjj, βaa, βf, ω, γ, φ} and θ = {βʹjj, βʹaa, βf, ω, γ, 

φ}. Parameter estimates were determined by maximising the total model log-likelihood (eqn S6) 

using the “optim” function in R 3.1.0 (www.r-project.org). To distinguish between the competing 

models, Akaike’s Information Criterion (AIC) was used; to avoid instances where the best AIC 

model does not have the lowest AIC value due to uncertainty from sampling error, all models with 

ΔAIC ≤ 6 units were considered to have some level of support [11, 14]. A bootstrap approach was 

used to calculate 95% confidence intervals for each parameter of the best fitting model selected by 

AIC. Specifically, 1000 model replicates were fitted by re-sampling the prevalence data between 

years, but from the same month. All analyses were conducted in R 3.1.0 (www.r-project.org). 

 

ESM 1.4: Basic Reproductive Number 

1.4.1. Theoretical background 

The basic reproductive number, R0, is defined as the expected number of secondary cases attributed 

to a typical infectious individuals in an entirely susceptible population [15]. Thus, in cases where R0 

< 1, a pathogen will not successfully invade when a typical infectious individual causes less than one 

infection in an entirely susceptible population. Such populations exhibit a stable disease-free 

equilibrium. When R0 > 1, a pathogen will successfully invade causing instability in the disease-free 

equilibrium. In this regard, R0 is a threshold parameter, reflecting whether a pathogen will 

successfully invade a population, describing the stability of a system’s disease-free equilibrium. 
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The above definition is acceptable in homogeneous populations and calculations of R0 are well 

established for such models [15]. However, in heterogeneous populations, where infected individuals 

can be classified into discrete classes (e.g. by age or behaviour), defining a typical infectious 

individual is less straightforward, and estimating R0 more complex [15-17]. Theoretically, in such 

cases, separate R0 values for each class can be calculated; however, this does not provide a single 

value for estimating the likelihood of disease invasion in the entire population [10]. Further, 

averaging the individual R0 values for each class to obtain a composite R0 value leads to erroneous 

estimates, since it does not account for the proportion of infected individuals in each class. This can 

lead to R0 being underestimated for heterogeneous populations [10]. Thus, it is necessary to account 

for the rate at which infection is transmitted between these heterogeneous classes by weighting R0 

according to the expected level of infection in each class in an entirely susceptible population [15].  

In homogeneous compartment models, there are two dynamical phases of infection, whereas in 

heterogeneous models there are three phases. For a detailed description of these phases see [10]. The 

second phase in heterogeneous models is analogous to the stable stage distribution (SSD) of 

demographic models [18] and it is during this phase that an infection will successfully invade or die 

out. As with the SSD in demographic models [19], R0 provides insight into the eventual growth rate 

of infection, while the growth of a disease in the early phase is independent of R0. In some instances, 

conditions favouring disease spread will change, and so R0 may no longer be a suitable measure of 

disease transmission [17]. Nevertheless, R0 continues to be a meaningful measure of disease spread 

since, in many disease systems, peak prevalence of infected hosts and the final size of an epidemic 

are increasing functions of R0 [17]. 

In heterogeneous cases, R0 is frequently determined using a ‘next generation matrix’ (NGM) [15-17, 

20]. Here, the demographic equivalent of ‘being born’ into a ‘generation’ refers to ‘becoming 

infected’ [20]. R0 is determined during the second dynamical phase, because this stage is independent 

of the initial conditions and presents a natural weighting of the number of infections caused by an 

initial infected individual, in each class [10].  

In heterogeneous models, in order to find the next generation matrix, K, it is necessary to consider 

infectious individuals of m distinct classes of which r are infected. x = xi, …, xm is the density of 

individuals in compartment i and x0 is the disease-free equilibrium. Since the relative change in 

susceptibles is small during the initial phase of invasion, their numbers can be fixed at the disease 

free equilibrium [20]. To calculate K, two matrices need to be determined from the model; F, which 

describes the rate at which new infections arise (gains) and V, that describes the rate at which 

individuals enter or leave the infectious class due to infection, recovery or death (losses) [15]. 
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Although there may be several ways to define F and V, there is usually only one that is biologically 

meaningful [21]. The rate of change of xi is given by:  

                
𝑑𝑥𝑖

𝑑𝑡
= 𝐅𝑖(𝑥) − 𝐕𝑖(𝑥).                                                                                                            (S7) 

Here, Fi(x) is the rate of new infections in compartment i and Vi(x) = Vi
-(x) - Vi

+(x), where Vi
+ 

describes the rate at which individuals enter compartment i, whilst Vi
- describes the rate at which 

individuals leave the ith compartment. 

In order to form the NGM, the following assumptions should be met [15, 21]. 

1. If a compartment contains no individuals, there can be no movement of individuals out of the 

compartment, through death, infection or other means.  

2. No movement between compartments can be negative 

3. If the population is disease-free, there can be no movement into the infectious population (e.g. 

through density-independent immigration of infectious individuals).  

4. There can be no movement of infections into classes that are defined as non-infectious. 

5. The disease-free equilibrium is locally asymptotically stable in the absence of new infections.  

Assuming that these conditions are met, the NGM K can then be formed from the partial derivatives 

of the matrices Fi and Vi, such that;  

𝐅 = [
𝜕𝐹𝑖

𝜕𝑥𝑠
(𝑥0)]  and 𝐕 = [

𝜕𝑉𝑖

𝜕𝑥𝑠
(𝑥0)],                                                                                  (S8, S9) 

where i, s = 1, ..., r. The (s,k) entry of V-1, describes the average length of time an infected individual 

introduced to compartment k spends in compartment s, and the (i,s) entry of F is the rate at which an 

infectious individual in compartment s produces new infections in compartment i. The product of 

these matrices, FV-1, is the NGM K. Thus, the (i,k) entry of FV-1 provides the expected rate of new 

infections in compartment i produced by an infectious individual introduced to compartment k. When 

the matrix element FVi,k = 0, no new cases produced in infected state k can be in infected state i 

immediately following infection.  

1.4.2. Calculating R0  

In the model described above (eqn S2), each age class has individuals in susceptible, exposed and 

infected disease compartments, such that the vector x = (Sj, Ej, Ij, Sa, Ea, Ia) and the disease free 

equilibrium x0 = (Sj,0,0,Sa,0,0), with Sj = S0j and Sa = S0a defined as the initial densities. To define the 

NGM for this model, it is necessary to examine how new infections arise and how individuals move 
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between disease states. Since there are four infected states (Ej, Ea, Ij, Ia), the resulting system will be 

four-dimensional. To define the rate of new infections, evaluated at the disease-free equilibrium, the 

matrix F was constructed for the above model as: 

𝐅 =  

[
 
 
 
 
 0 0 𝛽′𝑗𝑗

𝑆0𝑗

𝑁
𝛽′𝑎𝑗

𝑆0𝑗

𝑁

0 0 𝛽′𝑗𝑎
𝑆0𝑎

𝑁
𝛽′𝑎𝑎

𝑆0𝑎

𝑁
0 0 0 0
0 0 0 0 ]

 
 
 
 
 

.                                                                                                   (S10) 

To define how individuals can move between compartments, the matrix V is:  

𝐕 =  

[
 
 
 
(𝜎 + 𝜇𝑗) 0 0 0

0 (𝜎 + 𝜇𝑎) 0 0
−𝜎 0 (𝛼 + 𝜇𝑗 + 𝛾) 0

0 −𝜎 0 (𝛼 + 𝜇𝑎 + 𝛾)]
 
 
 

.                                                     (𝑆11) 

Since V is a non-singular M-matrix [17], it can be inverted to obtain V-1:  

𝐕−𝟏 = 

[
 
 
 
 
 
 
 
 

1

(𝜎 + 𝜇𝑗)
0 0 0

0
1

(𝜎 + 𝜇𝑎)
0 0

𝜎

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)
0

1

(𝛼 + 𝜇𝑗 + 𝛾)
0

0
𝜎

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)
0

1

(𝛼 + 𝜇𝑎 + 𝛾)]
 
 
 
 
 
 
 
 

 .               (S12) 

These matrices are then multiplied to obtain: 

−𝐅𝐕−𝟏

=

[
 
 
 
 
 0 0 𝛽′𝑗𝑗

𝑆0𝑗

𝑁
𝛽′𝑎𝑗

𝑆0𝑗

𝑁

0 0 𝛽′𝑗𝑎
𝑆0𝑎

𝑁
𝛽′𝑎𝑎

𝑆0𝑎

𝑁
0 0 0 0
0 0 0 0 ]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

1

(𝜎 + 𝜇𝑗)
0 0 0

0
1

(𝜎 + 𝜇𝑎)
0 0

𝜎

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)
0

1

(𝛼 + 𝜇𝑗 + 𝛾)
0

0
𝜎

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)
0

1

(𝛼 + 𝜇𝑎 + 𝛾)]
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=

 
 
 
 
 
 
 

𝜎𝛽′𝑗𝑗

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)

𝑆0𝑗

𝑁

𝜎𝛽′𝑎𝑗

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)

𝑆0𝑗

𝑁

𝛽′𝑗𝑗

𝛼 + 𝜇𝑗 + 𝛾

𝑆0𝑗

𝑁

𝛽′𝑎𝑗

𝛼 + 𝜇𝑎 + 𝛾

𝑆0𝑗

𝑁

𝜎𝛽′𝑗𝑎

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)

𝑆0𝑎

𝑁

𝜎𝛽′𝑎𝑎

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)

𝑆0𝑎

𝑁

𝛽′𝑗𝑎

𝛼 + 𝜇𝑗 + 𝛾

𝑆0𝑎

𝑁

𝛽′𝑗𝑗

𝛼 + 𝜇𝑎 + 𝛾

𝑆0𝑎

𝑁

0 0 0 0
0 0 0 0  

 
 
 
 
 
 

.      (𝑆13)      

However, of the four infected states, only two are ‘states-at-infection’, i.e. the state in which an 

individual becomes infected or has their ‘epidemiological birth’ [22]. In this model, E is the only 

state-at-infection, as an individual can only be in the state I after the latent period, not immediately 

after infection. NGM calculation relies only on the states-at-infection [22], which in this example are 

identified as the two non-zero rows of F. Following established methods [22], FV-1
 is pre- and post-

multiplied by an auxiliary matrix, E, whose column elements relate to the non-zero rows of F: 

𝐄 = [

1 0
0 1
0 0
0 0

].                                                                                                                                       (S14) 

Hence, the next-generation matrix is: 

𝐊 = −𝐄ʹ𝐅𝐕−𝟏𝐄 =

[
 
 
 
 

𝜎𝛽′
𝑗𝑗

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)

𝑆0𝑗

𝑁

𝜎𝛽′
𝑎𝑗

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)

𝑆0𝑗

𝑁

𝜎𝛽′
𝑗𝑎

(𝜎 + 𝜇𝑗)(𝛼 + 𝜇𝑗 + 𝛾)

𝑆0𝑎

𝑁

𝜎𝛽′
𝑎𝑎

(𝜎 + 𝜇𝑎)(𝛼 + 𝜇𝑎 + 𝛾)

𝑆0𝑎

𝑁 ]
 
 
 
 

                    (𝑆15) 

Here, the epidemiological meaning of the elements is clear, where σ/(σ + μ) is the mean length of the 

latent period (i.e. probability of transitioning from infectious class E to I) and 1/(α+μ+γ) is the mean 

length of the infectious period (i.e. the probability of transitions out of the I infectious state). 

The NGM is non-negative, such that the dominant eigenvalue is non-negative and, as shown 

previously [17], is a threshold parameter for the stability of the disease-free equilibrium. Associated 

with this eigenvalue is a non-negative eigenvector, w, that effectively describes the distribution of 

infected individuals that produce the greatest number, R0, of secondary infections per generation 

[21]. Thus R0 and w together describe a ‘typical’ infectious individual, where R0 is the spectral 

radius,𝜌, or the dominant eigenvalue of the next-generation matrix: 

 R0 = ρ(K).                                    (S16) 

For models including indirect transmission, the overall R0 is equal to R0 + 𝑅0
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡, where 

𝑅0
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 is calculated as [23]:  
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 𝑅0
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =

𝜔𝛽𝑓(𝑆0𝑗+𝑆0𝑎)

𝑚(𝜇+𝛼+𝛾)
.           (S17) 

R0 was calculated for the most parsimonious model selected by AIC, using the parameter value 

estimates obtained from maximum likelihood. To determine the 95% confidence intervals for R0, 

parameters values were resampled from a truncated multivariate normal distribution, using the mean 

and 95% confidence intervals from the model fitting process. CIs were then calculated for R0, from 

the 10,000 bootstrap replicates that were run using ‘rtmvnorm’ from the ‘tmvtnorm’ package in R 

3.1.0 (www.r-project.org).  
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ESM: Tables and Figures 

 

Table S1. Model selection results for null and SEI models. The number of parameters (K), log-

likelihoods (LL), and AIC values for each model are presented. Parameters are defined in the 

Methods, and Table 1.  

 

 Model Parameters K Log- 

likelihood 

AIC ΔAIC 

MH Null model 
jp , ap  φ 3 -325.92 657.83 25.83 

MD Density-dependent βjj, βaa, γ, φ 4 -320.48 648.97 16.96 

MF Frequency-dependent  βʹjj, βʹaa, γ, φ 4 -312.00 632.00 0 

MDI Density-dependent + Indirect   βjj, βaa, γ, φ, βf, ω 6 -320.46 652.92 20.92 

MFI Frequency-dependent + 

Indirect   

βʹjj, βʹaa, γ, φ, βf, ω 6 -311.67 635.34 3.34 
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Figure S1. Monthly number of individuals of total sampled foxes (no fill) and infected foxes (blue) 

from 1994 – 2010. (A) Juveniles; (B) adults. Boxes show the sample median, minimum and 

maximum. Error bars indicate the lower and upper quartiles and outliers are indicated by open 

circles. 
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Figure S2. Mean monthly prevalence of mange infection for juveniles (dashed line, open circles) and 

adults (solid line, closed circles) from 1994 – 2010, with 95% confidence intervals. 
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Figure S3. The predicted population density (a) and prevalence (b) for the frequency-dependent SEI 

model (MF). Solid lines indicate predicted density for juveniles and adults of susceptible and exposed 

individuals (Sj, Sa, Ej, Ea) and predicted density and prevalence of infected juveniles and adults (Ij 

and Ia), against the observed population density and age-specific prevalence data (dashed lines). 
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