12 research outputs found

    Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping

    Get PDF
    We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution

    Broadband gain-spectrum measurement for fiber optical parametric and Raman amplifiers

    Get PDF
    We examine the use of a depolarized broadband probe to experimentally measure gain spectra of amplifiers comprising parametric and Raman gain. The suggested technique allows a quick and accurate characterization of gain spectra spanning more than 100 nm. We derive formulas for processing spectral data to address polarization dependent gain and idler generation, and consequently develop a measurement methodology for obtaining reliable results. We demonstrate the viability of this approach by performing an experimental comparison with results obtained using tunable lasers. We expect the technique described here to be useful for fiber optical parametric amplifier development and characterization

    Transmission comparison of ultra-long Raman fibre laser based amplification with first and dual order Raman amplification using 10×118 Gbit/s DP-QPSK

    Get PDF
    Experimental investigations of 10×118 Gbit/s DP-QPSK WDM transmission using three types of distributed Raman amplification techniques are presented. Novel ultra-long Raman fibre laser based amplification with second order counter-propagated pumping is compared with conventional first order and dual order counter-pumped Raman amplification. We demonstrate that URFL based amplification can extend the transmission reach up to a distance of 7520 km in comparison with 5010 km and 6180 km using first order and dual order Raman amplification respectively

    Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping

    Get PDF
    We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution

    A novel architecture for all-optical add-drop multiplexing of OFDM signals

    Get PDF
    We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Extensive numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters

    Limits of broadband fiber optic parametric devices due to stimulated Brillouin scattering

    Get PDF
    We experimentally find a practical stimulated Brillouin scattering (SBS) threshold for broadband high-performance fiber optical parametric devices relying on dispersion-stable GeO2-doped silica highly nonlinear fibers. We demonstrate that SBS limits the nonlinear phase shift in such fibers to ~0.3 rad per pump unless the SBS is mitigated in some way. We consequently derive corresponding limits on signal gain and conversion efficiency and find the required SBS mitigation factor for a range of fiber optic parametric devices’ applications. Finally, we examine the level of SBS mitigation using air gaps and fiber tapers for implementation in polarization-insensitive fiber optic parametric devices employing bidirectional loops. We observe that an air gap or fiber taper are not very efficient for SBS mitigation as they provided an increase in SBS threshold up to 0.7 dB attributed primarily to their excess loss

    Enhanced superchannel transmission using phase conjugation

    Get PDF
    We demonstrate polarisation insensitive dual-band optical phase conjugation for multiple 400Gbit/s optical superchannels using a Raman amplified transmission link with a realistic span length of 75km. The resultant increase in transmission distance is confirmed analytically

    43Gbit/s RZ-DQPSK transmission over 1000km of G.652 ultra-low-loss fibre with 250km amplifier spans

    Get PDF
    We demonstrate 40x43Gbit/s RZ-DQPSK transmission over 1000km of ultra-low-loss G.652 fibre with 250km amplifier spacing. Hybrid Raman-EDFA amplification with co- and contra-directional Raman pumping enables 27dB Raman gain per span and error-free post-FEC performance. ©2010 IEEE

    Wavelength conversion at 40 Gbit/s via cross-gain modulation in distributed feedback laser integrated with semiconductor optical amplifier

    No full text
    Wavelength conversion via cross-gain modulation is demonstrated for the first time at 40 Gbit/s in a distributed feedback laser monolithically integrated with a semiconductor optical amplifier. A bit error rate penalty of 2.2 dB at 10-<sup>9</sup> is reported for the operatio
    corecore