34 research outputs found
Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets
The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits
BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis.
BACKGROUND: Mutations in the gene encoding the bone morphogenetic protein receptor type II (BMPR2) are the commonest genetic cause of pulmonary arterial hypertension (PAH). However, the effect of BMPR2 mutations on clinical phenotype and outcomes remains uncertain. METHODS: We analysed individual participant data of 1550 patients with idiopathic, heritable, and anorexigen-associated PAH from eight cohorts that had been systematically tested for BMPR2 mutations. The primary outcome was the composite of death or lung transplantation. All-cause mortality was the secondary outcome. Hazard ratios (HRs) for death or transplantation and all-cause mortality associated with the presence of BMPR2 mutation were calculated using Cox proportional hazards models stratified by cohort. FINDINGS: Overall, 448 (29%) of 1550 patients had a BMPR2 mutation. Mutation carriers were younger at diagnosis (mean age 35·4 [SD 14·8] vs 42·0 [17·8] years), had a higher mean pulmonary artery pressure (60·5 [13·8] vs 56·4 [15·3] mm Hg) and pulmonary vascular resistance (16·6 [8·3] vs 12·9 [8·3] Wood units), and lower cardiac index (2·11 [0·69] vs 2·51 [0·92] L/min per m(2); all p<0·0001). Patients with BMPR2 mutations were less likely to respond to acute vasodilator testing (3% [10 of 380] vs 16% [147 of 907]; p<0·0001). Among the 1164 individuals with available survival data, age-adjusted and sex-adjusted HRs comparing BMPR2 mutation carriers with non-carriers were 1·42 (95% CI 1·15-1·75; p=0·0011) for the composite of death or lung transplantation and 1·27 (1·00-1·60; p=0·046) for all-cause mortality. These HRs were attenuated after adjustment for potential mediators including pulmonary vascular resistance, cardiac index, and vasoreactivity. HRs for death or transplantation and all-cause mortality associated with BMPR2 mutation were similar in men and women, but higher in patients with a younger age at diagnosis (p=0·0030 for death or transplantation, p=0·011 for all-cause mortality). INTERPRETATION: Patients with PAH and BMPR2 mutations present at a younger age with more severe disease, and are at increased risk of death, and death or transplantation, compared with those without BMPR2 mutations. FUNDING: Cambridge NIHR Biomedical Research Centre, Medical Research Council, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, INSERM, Université Paris-Sud, Intermountain Research and Medical Foundation, Vanderbilt University, National Center for Advancing Translational Sciences, National Institutes of Health, National Natural Science Foundation of China, and Beijing Natural Science Foundation.Cambridge NIHR Biomedical Research Centre, Medical Research Council, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, INSERM, Université Paris-Sud, Intermountain Research and Medical Foundation, Vanderbilt University, The National Center for Advancing Translational Sciences, The National Institutes of Health, National Natural Science Foundation of China and Beijing Natural Science Foundation.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/S2213-2600(15)00544-
The phytopathogen Rhodococcus fascians breaks apical dominance and activates axillary meristems by inducing plant genes involved in hormone metabolism
Rhodococcus fascians is a Gram-positive bacterium that interacts with many plant species and induces multiple shoots through a combination of activation of dormant axillary meristems and de novo meristem formation. Although phenotypic analysis of the symptoms of infected plants clearly demonstrates a disturbance of the phytohormonal balance and an activation of the cell cycle, the actual mechanism of symptom development and the targets of the bacterial signals are unknown. To elucidate the molecular pathways that are responsive to R. fascians infection, differential display was performed on Nicotiana tabacum as a host. Four differentially expressed genes could be identified that putatively encode a senescence-associated protein, a gibberellin 2-oxidase, a P450 monooxygenase and a proline dehydrogenase. The differential expression of the three latter genes was confirmed on infected Arabidopsis thaliana plants by quantitative reverse transcription polymerase chain reactions, supporting their general function in R. fascians-induced symptom development. The role of these genes in hormone metabolism, especially of gibberellin and abscisic acid, in breaking apical dominance and in activating axillary meristems, which are processes associated with symptom development, is discussed