618 research outputs found

    Stokes flows in a 2D bifurcation

    Full text link
    The flow network model is an established approach to approximate pressure-flow relationships in a network, which has been widely used in many contexts. However, little is known about the impact of bifurcation geometry on such approximations, so the existing models mostly rely on unidirectional flow assumption and Poiseuille's law, and thus neglect the flow details at each bifurcation. In this work, we address these limitations by computing Stokes flows in a 2D bifurcation using LARS (Lightning-AAA Rational Stokes), a novel mesh-free algorithm for solving 2D Stokes flow problems utilising an applied complex analysis approach based on rational approximation of the Goursat functions. Using our 2D bifurcation model, we show that the fluxes in two child branches depend on not only pressures and widths of inlet and outlet branches, as most previous studies have assumed, but also detailed bifurcation geometries (e.g. bifurcation angle), which were not considered in previous studies. The 2D Stokes flow simulations allow us to represent the relationship between pressures and fluxes of a bifurcation using an updated flow network, which considers the bifurcation geometry and can be easily incorporated into previous flow network approaches. The errors in the flow conductance of a channel in a bifurcation approximated using Poiseuille's law can be greater than 16%, when the centreline length is twice the inlet channel width and the bifurcation geometry is highly asymmetric. In addition, we present details of 2D Stokes flow features, such as flow separation in a bifurcation and flows around fixed objects at different locations, which previous flow network models cannot capture. These findings suggest the importance of incorporating detailed flow modelling techniques alongside existing flow network approaches when solving complex flow problems

    Millennial‐Scale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse

    Get PDF
    The response of the Antarctic Ice Sheet to ice shelf collapse is explored with a high resolution ice sheet model. Rapid melting is applied to each of its major present day drainage basins in turn , to determine which parts of the ice sheet are most vulnerable to change in oceanic forcing, over the next 1000 years. We findthat West Antarctica can be largely deglaciated over a millenium, leading to more than two metres of sea level rise, if any of its major ice shelved disintegrated. The response of East Antarctica is more muted, but not negligible

    Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams

    Get PDF
    Present-day mass loss from the West Antarctic ice sheet is centred on the Amundsen Sea Embayment (ASE), primarily through ice streams, including Pine Island, Thwaites and Smith glaciers. To understand the differences in response of these ice streams, we ran a perturbed parameter ensemble, using a vertically-integrated ice flow model with adaptive mesh refinement. We generated 71 sets of three physical parameters (basal traction coefficient, ice viscosity stiffening factor and sub-shelf melt rate), which we used to simulate the ASE for 50 years. We also explored the effects of different bed geometries and basal sliding laws. The mean rate of sea-level rise across the ensemble of simulations is comparable with current observed rates for the ASE. We found evidence that grounding line dynamics are sensitive to features in the bed geometry: simulations using BedMap2 geometry resulted in a higher rate of sea-level rise than simulations using a rougher geometry, created using mass conservation. Modelled grounding-line retreat of all the three ice streams was sensitive to viscosity and basal traction, while the melt rate was more important in Pine Island and Smith glaciers, which flow through more confined ice shelves than Thwaites, which has a relatively unconfined shelf

    Evaluation of Chemical Additives for the Separation and Recovery of Bacteria from Food Matrices

    Get PDF
    The microbiological testing of foods is a well-established science. Due to the severity of foodborne pathogen illnesses, the widespread use and implementation of rapid detection methods in food testing labs is increasingly important. The first step for successful testing is sampling. Surfactants have been widely used in food microbiology, but there is not much, if any, published research about the use of fatty alcohols and chemical dispersants as aids in microbial separation and recovery. The microbial extraction efficiency of Escherichia coli K12 and Listeria innocua from three representative food matrices (hot dogs, spinach, and milk) was measured using chemical additives (surfactants, fatty alcohols, and a chemical dispersant) at three concentrations, each in a buffered solution. The food matrices were inoculated with a known amount of bacteria, blended in a buffer solution, with and without additives, and then centrifuged. Data were analyzed through selective media plate counts. Results showed that Tween 80 at 0.01% was found to be the most effective additive for microbial recovery from each food matrix examined. However, the addition of fatty alcohols to surfactants significantly aided in separation and recovery, and should be further studied

    Stokes flows in a 2D bifurcation

    Get PDF
    The flow network model is an established approach to approximate pressure-flow relationships in a network, which has been widely used in many contexts. However, little is known about the impact of bifurcation geometry on such approximations, so the existing models mostly rely on unidirectional flow assumption and Poiseuille's law, and thus neglect the flow details at each bifurcation. In this work, we address these limitations by computing Stokes flows in a 2D bifurcation using LARS (Lightning-AAA Rational Stokes), a novel mesh-free algorithm for solving 2D Stokes flow problems utilising an applied complex analysis approach based on rational approximation of the Goursat functions. Using our 2D bifurcation model, we show that the fluxes in two child branches depend on not only pressures and widths of inlet and outlet branches, as most previous studies have assumed, but also detailed bifurcation geometries (e.g. bifurcation angle), which were not considered in previous studies. The 2D Stokes flow simulations allow us to represent the relationship between pressures and fluxes of a bifurcation using an updated flow network, which considers the bifurcation geometry and can be easily incorporated into previous flow network approaches. The errors in the flow conductance of a channel in a bifurcation approximated using Poiseuille's law can be greater than 16%, when the centreline length is twice the inlet channel width and the bifurcation geometry is highly asymmetric. In addition, we present details of 2D Stokes flow features, such as flow separation in a bifurcation and flows around fixed objects at different locations, which previous flow network models cannot capture. These findings suggest the importance of incorporating detailed flow modelling techniques alongside existing flow network approaches when solving complex flow problems

    Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells

    Get PDF
    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido

    Subject Lines as Sensors:Co-word Analysis of Email to Support the Management of Collaborative Engineering Work

    Get PDF
    This paper presents a topic-based analysis of email subject line data from a large-scale engineering project and explores its utility for supporting the management of collaborative work. The main contributions of the paper are a novel interpretation of the co-word network analysis method for application within an engineering project management context, and the appraisal of the method for d=finding patterns within subject line data. Our findings suggest that the approach has the potential to contribute to monitoring work complexity, tracking progress, recognizing synergy and divergence, detecting scope creep, and supporting knowledge capture

    Growing Environmental Activists: Developing Environmental Agency and Engagement Through Children’s Fiction.

    Get PDF
    We explore how story has the potential to encourage environmental engagement and a sense of agency provided that critical discussion takes place. We illuminate this with reference to the philosophies of John Macmurray on personal agency and social relations; of John Dewey on the primacy of experience for philosophy; and of Paul Ricoeur on hermeneutics, dialogue, dialectics and narrative. We view the use of fiction for environmental understanding as hermeneutic, a form of conceptualising place which interprets experience and perception. The four writers for young people discussed are Ernest Thompson Seton, Kenneth Grahame, Michelle Paver and Philip Pullman. We develop the concept of critical dialogue, and link this to Crick's demand for active democratic citizenship. We illustrate the educational potential for environmental discussions based on literature leading to deeper understanding of place and environment, encouraging the belief in young people that they can be and become agents for change. We develop from Zimbardo the key concept of heroic resister to encourage young people to overcome peer pressure. We conclude with a call to develop a greater awareness of the potential of fiction for learning, and for writers to produce more focused stories engaging with environmental responsibility and activism

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit
    corecore