2,417 research outputs found
Orchestrating Equity: What Antidiscrimination Law Can Learn from Blind Hiring in American Orchestras
Winner of Penn Law\u27s 2022 Herman Lazarus Prize for the best paper on a topic of comparative labor or employment law
Characterization of the CD177 interaction with the ANCA antigen proteinase 3
Proteinase 3 is a serine protease found in neutrophil granules and on the
extracellular neutrophil membrane (mPR3). mPR3 is a major antigen for anti-
neutrophil cytoplasmic antibodies (PR3-ANCAs), autoantibodies causing fatal
autoimmune diseases. In most individuals, a subpopulation of neutrophils also
produce CD177, proposed to present additional PR3 on the surface, resulting in
CD177neg/mPR3low and CD177pos/mPR3high neutrophil subsets. A positive
correlation has been shown between mPR3 abundance, disease incidence, and
clinical outcome. We present here a detailed investigation of the PR3:CD177
complex, verifying the interaction, demonstrating the effect of binding on PR3
proteolytic activity and explaining the accessibility of major PR3-ANCA
epitopes. We observed high affinity PR3:CD177 complex formation by surface
plasmon resonance. Using flow cytometry and a PR3-specific FRET assay, we
found that CD177 binding reduced the proteolytic activity of PR3 in vitro
using purified proteins, in neutrophil degranulation supernatants containing
wtPR3 and directly on mPR3high neutrophils and PR3-loaded HEK cells. Finally,
CD177pos/mPR3high neutrophils showed no migration advantage in vitro or in
vivo when migrating from the blood into the oral cavity. We illuminate details
of the PR3:CD177 interaction explaining mPR3 membrane orientation and
proteolytic activity with relevance to ANCA activation of the distinct mPR3
neutrophil populations
Presence of porcine cytomegalovirus, a porcine roseolovirus, in wild boars in Italy and Germany
Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs
Nonthermal Hard X-ray Emission and Iron Kalpha Emission from a Superflare on II Pegasi
We report on an X-ray flare detected on the active binary system II~Pegasi
with the Swift telescope. The trigger had a 10-200 keV luminosity of
2.2 erg s-- a superflare, by comparison with energies of
typical stellar flares on active binary systems. The trigger spectrum indicates
a hot thermal plasma with T180 K. X-ray spectral analysis
from 0.8--200 keV with the X-Ray Telescope and BAT in the next two orbits
reveals evidence for a thermal component (T80 K) and Fe K 6.4
keV emission. A tail of emission out to 200 keV can be fit with either an
extremely high temperature thermal plasma (TK) or power-law
emission. Based on analogies with solar flares, we attribute the excess
continuum emission to nonthermal thick-target bremsstrahlung emission from a
population of accelerated electrons. We estimate the radiated energy from
0.01--200 keV to be erg, the total radiated energy over
all wavelengths erg, the energy in nonthermal electrons above 20
keV erg, and conducted energy erg. The
nonthermal interpretation gives a reasonable value for the total energy in
electrons 20 keV when compared to the upper and lower bounds on the thermal
energy content of the flare. This marks the first occasion in which evidence
exists for nonthermal hard X-ray emission from a stellar flare. We investigate
the emission mechanism responsible for producing the 6.4 keV feature, and find
that collisional ionization from nonthermal electrons appears to be more
plausible than the photoionization mechanism usually invoked on the Sun and
pre-main sequence stars.Comment: 41 pages, 7 figures, accepted for publication in the Astrophysical
Journa
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …