98 research outputs found

    Electron Photodetachment from Aqueous Anions. III. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs. Poly- atomic Anions

    Full text link
    Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS-, CO32-, SO32-, and Fe(CN)64-) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 nm or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distribution has a broad component, even at relatively low photoexcitation energy. There seem to be no well-defined threshold energy below which the broadening of the distribution does not occur, as is the case for halide anions. Direct ionization to the conduction band of water is the most likely photoprocess broadening the electron distribution. Our study suggests that halide anions are in the class of their own; electron photodetachment from polyatomic, especially polyvalent, anions follows a different set of rules.Comment: to be submitted to J. Phys. Chem. A; 28 pages, 5 figs + Supplemen

    Title Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation

    Get PDF
    We use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The two decay mechanisms occur with similar yield for an excitation energy of 9.3 eV, whereas the major channel at 8.3 eV is dissociation. The geminate recombination kinetics of the H and OH fragments, which can be followed in the transient absorption probed at 267 nm, provide a window on the dissociation dynamics at the lower excitation energy. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies.Comment: 25 pages, 5 figs, submitted to J Chem Phy

    Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/126/16/10.1063/1.2727468.The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3eV to ionization at 12.4eV. The two channels occur with similar yield for an excitation energy of 9.3eV. For the lowest excitation energy, the transient absorption at 267nm probes the geminate recombination kinetics of the H and OH fragments, providing a window on the dissociation dynamics. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7±0.2nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O–H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies

    Ultrafast Dynamics for Electron Photodetachment from Aqueous Hydroxide

    Full text link
    Charge-transfer-to-solvent (CTTS) reactions of hydroxide induced by 200 nm monophotonic or 337 nm and 389 nm biphotonic excitation of this anion in aqueous solution have been studied by means of pump-probe ultrafast laser spectroscopy. Transient absorption kinetics of the hydrated electron, eaq-, have been observed, from a few hundred femtoseconds out to 600 ps, and studied as function of hydroxide concentration and temperature. The geminate decay kinetics are bimodal, with a fast exponential component (ca. 13 ps) and a slower power "tail" due to the diffusional escape of the electrons. For the biphotonic excitation, the extrapolated fraction of escaped electrons is 1.8 times higher than for the monophotonic 200 nm excitation (31% vs. 17.5% at 25 oC, respectively), due to the broadening of the electron distribution. The biphotonic electron detachment is very inefficient; the corresponding absorption coefficient at 400 nm is < 4 cm TW-1 M-1 (assuming unity quantum efficiency for the photodetachment). For [OH-] between 10 mM and 10 M, almost no concentration dependence of the time profiles of solvated electron kinetics was observed. At higher temperature, the escape fraction of the electrons increases with a slope of 3x10-3 K-1 and the recombination and diffusion-controlled dissociation of the close pairs become faster. Activation energies of 8.3 and 22.3 kJ/mol for these two processes were obtained. The semianalytical theory of Shushin for diffusion controlled reactions in the central force field was used to model the geminate dynamics. The implications of these results for photoionization of water are discussed.Comment: 44 pages, 9 figures; supplement: 4 pages, 7 figures; to be submitted to J. Chem. Phy

    Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3to12.4eV

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/125/4/10.1063/1.2217738.Transient absorption measurements monitor the geminate recombination kinetics of solvated electrons following two-photonionization of liquid water at several excitation energies in the range from 8.3to12.4eV. Modeling the kinetics of the electron reveals its average ejection length from the hydronium ion and hydroxyl radical counterparts and thus provides insight into the ionization mechanism. The electron ejection length increases monotonically from roughly 0.9nm at 8.3eV to nearly 4nm at 12.4eV, with the increase taking place most rapidly above 9.5eV. We connect our results with recent advances in the understanding of the electronic structure of liquid water and discuss the nature of the ionization mechanism as a function of excitation energy. The isotope dependence of the electron ejection length provides additional information about the ionization mechanism. The electron ejection length has a similar energy dependence for two-photonionization of liquid D(2)O, but is consistently shorter than in H(2)O by about 0.3nm across the wide range of excitation energies studied

    Exploring autoionization and photo-induced proton-coupled electron transfer pathways of phenol in aqueous solution

    Get PDF
    The excited state dynamics of phenol in water have been investigated using transient absorption spectroscopy. Solvated electrons and vibrationally cold phenoxyl radicals are observed upon 200 and 267 nm excitation, but with formation time scales that differ by more than 4 orders of magnitude. The impact of these findings is assessed in terms of the relative importance of autoionization versus proton-coupled electron transfer mechanisms in this computationally tractable model system
    corecore