4,131 research outputs found

    First-principles calculation of femtosecond symmetry-breaking atomic forces in photoexcited Bismuth

    Get PDF
    We present a first-principles method for the calculation of the polarization-dependent atomic forces resulting from optical excitation in a solid. We calculate the induced force driving the E-g phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c axis is absorbed, the photoexcited charge density breaks the threefold rotational symmetry, leading to an atomic force component perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting atomic force components parallel and perpendicular to the axis. The magnitude of the calculated force is in excellent agreement with that derived from recent measurements of the amplitude of E-g atomic motion and the decay time of several femtoseconds for the driving force

    Information sciences experiment system

    Get PDF
    The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed

    Elementary Excitations of a Bose-Einstein Condensate in an Effective Magnetic Field

    Get PDF
    We calculate the low energy elementary excitations of a Bose-Einstein Condensate in an effective magnetic field. The field is created by the interplay between light beams carrying orbital angular momentum and the trapped atoms. We examine the role of the homogeneous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector potentials with a more general radial dependence. We discuss the instabilities which arise and how these may be manifested.Comment: 8 pages, 4 figure

    Biologically Inspired Feedback Design for Drosophila Flight

    Get PDF
    We use a biologically motivated model of the Drosophila's flight mechanics and sensor processing to design a feedback control scheme to regulate forward flight. The model used for insect flight is the grand unified fly (GUF) [3] simulation consisting of rigid body kinematics, aerodynamic forces and moments, sensory systems, and a 3D environment model. We seek to design a control algorithm that will convert the sensory signals into proper wing beat commands to regulate forward flight. Modulating the wing beat frequency and mean stroke angle produces changes in the flight envelope. The sensory signals consist of estimates of rotational velocity from the haltere organs and translational velocity estimates from visual elementary motion detectors (EMD's) and matched retinal velocity filters. The controller is designed based on a longitudinal model of the flight dynamics. Feedforward commands are generated based on a desired forward velocity. The dynamics are linearized around this operating point and a feedback controller designed to correct deviations from the operating point. The control algorithm is implemented in the GUF simulator and achieves the desired tracking of the forward reference velocities and exhibits biologically realistic responses
    corecore