174 research outputs found
IXPE Mirror Module Assemblies
Expected to launch in 2021 Spring, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Astrophysics Small Explorer Mission with significant contributions from the Italian space agency (ASI). The IXPE observatory features three identical x-ray telescopes, each comprised of a 4-m-focal-length mirror module assembly (MMA, provided by NASA Marshall Space Flight Center) that focuses x rays onto a polarization-sensitive, imaging detector (contributed by ASI-funded institutions). This paper summarizes the MMAs design, fabrication, alignment and assembly, expected performance, and calibration plans
Monomeric IgA Antagonizes IgG-Mediated Enhancement of DENV Infection
Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune plasma in vivo, and may serve as a predictor of disease risk
Temporally Integrated Single Cell RNA Sequencing Analysis of PBMC from Experimental and Natural Primary Human DENV-1 Infections
Dengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection. While both experimental and natural primary DENV-1 infection resulted in overlapping patterns of inflammatory gene upregulation, natural primary DENV-1 infection was accompanied with a more pronounced suppression in gene products associated with protein translation and mitochondrial function, principally in monocytes. This suggests that the immune response elicited by experimental and natural primary DENV infection are similar, but that natural primary DENV-1 infection has a more pronounced impact on basic cellular processes to induce a multi-layered anti-viral state
Mid-Infrared Identifications of SCUBA Galaxies in the CUDSS 14-Hour Field with the Spitzer Space Telescope
We identify 17 possible 8.0 micron-selected counterparts to the submillimeter
galaxies in the CUDSS 14-hour field, derived from deep imaging carried out with
the IRAC and MIPS instruments aboard the Spitzer Space Telescope. Ten of the 17
counterparts are not the same as those previously identified at shorter
wavelengths. We argue that 8.0 micron selection offers a better means for
identifying counterparts to submillimeter galaxies than near-infrared or
optical selection. Based on the panchromatic SEDs, most counterparts appear to
be powered by ongoing star formation. Power-law fits to the SEDs suggest that
five objects in the 8.0 micron-selected counterpart sample harbor dominant
AGNs; a sixth object is identified as a possible AGN. The 3.6 to 8.0 micron
colors of the infrared-selected counterparts are significantly redder than the
general IRAC galaxy population in the CUDSS 14-hour field.Comment: 36 pages, 9 figures, accepted by the Astrophysical Journal. This
version corrects the bibliography and typographical errors in the text and
table
Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies
Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (\u3c100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses
The global burden of falls: Global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017
Background: Falls can lead to severe health loss including death. Past research has shown that falls are an important cause of death and disability worldwide. The Global Burden of Disease Study 2017 (GBD 2017) provides a comprehensive assessment of morbidity and mortality from falls. Methods: Estimates for mortality, years of life lost (YLLs), incidence, prevalence, years lived with disability (YLDs) and disability-adjusted life years (DALYs) were produced for 195 countries and territories from 1990 to 2017 for all ages using the GBD 2017 framework. Distributions of the bodily injury (eg, hip fracture) were estimated using hospital records. Results: Globally, the age-standardised incidence of falls was 2238 (1990-2532) per 100 000 in 2017, representing a decline of 3.7% (7.4 to 0.3) from 1990 to 2017. Age-standardised prevalence w
COSMOS-Web: Intrinsically Luminous z10 Galaxy Candidates Test Early Stellar Mass Assembly
We report the discovery of 15 exceptionally luminous
candidate galaxies discovered in the first 0.28 deg of JWST/NIRCam imaging
from the COSMOS-Web Survey. These sources span rest-frame UV magnitudes of
, and thus constitute the most intrinsically luminous
candidates identified by JWST to-date. Selected via NIRCam imaging
with Hubble ACS/F814W, deep ground-based observations corroborate their
detection and help significantly constrain their photometric redshifts. We
analyze their spectral energy distributions using multiple open-source codes
and evaluate the probability of low-redshift solutions; we conclude that 12/15
(80%) are likely genuine sources and 3/15 (20%) likely
low-redshift contaminants. Three of our candidates push the limits of
early stellar mass assembly: they have estimated stellar masses
, implying an effective stellar baryon fraction of
, where . The assembly of such stellar reservoirs is made
possible due to rapid, burst-driven star formation on timescales 100\,Myr
where the star-formation rate may far outpace the growth of the underlying dark
matter halos. This is supported by the similar volume densities inferred for
galaxies relative to
-- both about Mpc -- implying they live in halos of comparable
mass. At such high redshifts, the duty cycle for starbursts would be of order
unity, which could cause the observed change in the shape of the UVLF from a
double powerlaw to Schechter at . Spectroscopic redshift
confirmation and ensuing constraints of their masses will be critical to
understanding how, and if, such early massive galaxies push the limits of
galaxy formation in CDM.Comment: 30 pages, 9 figures; ApJ submitte
Protecting children in low-income and middle-income countries from COVID-19
CITATION: Ahmed, S. et al. 2020. Protecting children in low-income and middle-income countries from COVID-19. BMJ Global Health, 5:e002844. doi:10.1136/bmjgh-2020-002844.The original publication is available at https://gh.bmj.comA saving grace of the COVID-19 pandemic in high-income
and upper middle-income countries has been the relative sparing of children. As the disease spreads across low-income and middle-income countries (LMICs), long-standing
system vulnerabilities
may tragically manifest, and we worry
that children will be increasingly impacted,
both directly and indirectly. Drawing on our
shared child pneumonia experience globally,
we highlight these potential impacts on
children in LMICs and propose actions for a
collective response.https://gh.bmj.com/content/5/5/e002844.abstractPublisher's versio
Trophic Shifts of a Generalist Consumer in Response to Resource Pulses
Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore) to the diets of the White-footed mouse (Peromyscus leucopus) receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses
Unveiling the distant Universe: Characterizing Galaxies in the first epoch of COSMOS-Web
We report the identification of 15 galaxy candidates at using the
initial COSMOS-Web JWST observations over 77 arcmin through four NIRCam
filters (F115W, F150W, F277W, F444W) with an overlap with MIRI (F770W) of 8.7
arcmin. We fit the sample using several publicly-available SED fitting and
photometric redshift codes and determine their redshifts between and
(), UV-magnitudes between M =
21.2 and 19.5 (with M) and rest-frame
UV slopes (). These galaxies are, on average, more
luminous than most candidates discovered by JWST so far in the
literature, while exhibiting similar blue colors in their rest-frame UV. The
rest-frame UV slopes derived from SED-fitting are blue ([2.0,
2.7]) without reaching extremely blue values as reported in other recent
studies at these redshifts. The blue color is consistent with models that
suggest the underlying stellar population is not yet fully enriched in metals
like similarly luminous galaxies in the lower redshift Universe. The derived
stellar masses with MM are not in tension with the standard
CDM model and our measurement of the volume density of such UV
luminous galaxies aligns well with previously measured values presented in the
literature at . Our sample of galaxies, although compact, are
significantly resolved.Comment: Submitted to Ap
- …