49 research outputs found

    Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease

    Get PDF
    Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis

    Diabetes Mellitus and Mortality after Acute Coronary Syndrome as a First or Recurrent Cardiovascular Event

    Get PDF
    Diabetes Mellitus (DM) is associated with adverse cardiovascular prognosis. However, the risk associated with DM may vary between individuals according to their overall cardiovascular risk burden. Therefore, we aimed to determine whether DM is associated with poor outcome in patients presenting with Acute Coronary Syndrome (ACS) according to the index episode being a first or recurrent cardiovascular event.We conducted a retrospective analysis of a prospective cohort study involving 2499 consecutively admitted patients with confirmed ACS in 11 UK hospitals during 2003. Usual care was provided for all participants. Demographic factors, co-morbidity and treatment (during admission and at discharge) factors were recorded. The primary outcome was all cause mortality (median 2 year follow up), compared for cohorts with and without DM according to their prior cardiovascular disease (CVD) disease status. Adjusted analyses were performed with Cox proportional hazards regression analysis. Within the entire cohort, DM was associated with an unadjusted 45% increase in mortality. However, in patients free of a history of CVD, mortality of those with and without DM was similar (18.8% and 19.7% respectively; p = 0.74). In the group with CVD, mortality of patients with DM was significantly higher than those without DM (46.7% and 33.2% respectively; p<0.001). The age and sex adjusted interaction between DM and CVD in predicting mortality was highly significant (p = 0.002) and persisted after accounting for comorbidities and treatment factors (p = 0.006). Of patients free of CVD, DM was associated with smaller elevation of Troponin I (p<0.001). However in patients with pre-existing CVD Troponin I was similar (p = 0.992).DM is only associated with worse outcome after ACS in patients with a pre-existing history of CVD. Differences in the severity of myocyte necrosis may account for this. Further investigation is required, though our findings suggest that aggressive primary prevention of CVD in patients with DM may have beneficially modified their first presentation with (and mortality after) ACS

    Insulinlike Growth Factor-Binding Protein-1 Improves Vascular Endothelial Repair in Male Mice in the Setting of Insulin Resistance

    Get PDF
    Insulin resistance is associated with impaired endothelial regeneration in response to mechanical injury. We recently demonstrated that insulinlike growth factor–binding protein-1 (IGFBP1) ameliorated insulin resistance and increased nitric oxide generation in the endothelium. In this study, we hypothesized that IGFBP1 would improve endothelial regeneration and restore endothelial reparative functions in the setting of insulin resistance. In male mice heterozygous for deletion of insulin receptors, endothelial regeneration after femoral artery wire injury was enhanced by transgenic expression of human IGFBP1 (hIGFBP1). This was not explained by altered abundance of circulating myeloid angiogenic cells. Incubation of human endothelial cells with hIGFBP1 increased integrin expression and enhanced their ability to adhere to and repopulate denuded human saphenous vein ex vivo. In vitro, induction of insulin resistance by tumor necrosis factor α (TNFα) significantly inhibited endothelial cell migration and proliferation. Coincubation with hIGFBP1 restored endothelial migratory and proliferative capacity. At the molecular level, hIGFBP1 induced phosphorylation of focal adhesion kinase, activated RhoA and modulated TNFα-induced actin fiber anisotropy. Collectively, the effects of hIGFBP1 on endothelial cell responses and acceleration of endothelial regeneration in mice indicate that manipulating IGFBP1 could be exploited as a putative strategy to improve endothelial repair in the setting of insulin resistance

    Endothelial Insulin Receptor Restoration Rescues Vascular Function in Male Insulin Receptor Haploinsufficient Mice

    Get PDF
    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We investigated whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor knockout (IRKO) mice were crossed with mice expressing a human insulin receptor endothelial cell–specific overexpression (hIRECO) to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO mice in glucose and insulin tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO mice exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild type littermates. These phenotypic changes were associated with increased basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO mice also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling

    In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis

    Get PDF
    Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis

    VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions

    Get PDF
    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways

    Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions

    No full text
    Intracoronary guidewires used in percutaneous coronary intervention can also be configured to provide temporary ventricular pacing. Trans coronary electrophysiological parameters recorded by employing coronary guidewires may have a potential role in assessing myocardial viability and could provide a means to make an immediate on-table decision about revascularisation. To date, some small studies have demonstrated the safety of this technique in temporary cardiac pacing, but further research is required to refine this approach and establish its clinical utility in myocardial viability assessment. In this review we discuss the potential role of trans coronary electrophysiology in the assessment of myocardial viability
    corecore