19 research outputs found

    Comparing variant calling algorithms for target-exon sequencing in a large sample

    Full text link
    Abstract Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.http://deepblue.lib.umich.edu/bitstream/2027.42/134735/1/12859_2015_Article_489.pd

    Comparing variant calling algorithms for target-exon sequencing in a large sample

    Get PDF
    Abstract Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.http://deepblue.lib.umich.edu/bitstream/2027.42/110906/1/12859_2015_Article_489.pd

    Performance of Genotype Imputation for Rare Variants Identified in Exons and Flanking Regions of Genes

    Get PDF
    Genotype imputation has the potential to assess human genetic variation at a lower cost than assaying the variants using laboratory techniques. The performance of imputation for rare variants has not been comprehensively studied. We utilized 8865 human samples with high depth resequencing data for the exons and flanking regions of 202 genes and Genome-Wide Association Study (GWAS) data to characterize the performance of genotype imputation for rare variants. We evaluated reference sets ranging from 100 to 3713 subjects for imputing into samples typed for the Affymetrix (500K and 6.0) and Illumina 550K GWAS panels. The proportion of variants that could be well imputed (true r2>0.7) with a reference panel of 3713 individuals was: 31% (Illumina 550K) or 25% (Affymetrix 500K) with MAF (Minor Allele Frequency) less than or equal 0.001, 48% or 35% with 0.001<MAF< = 0.005, 54% or 38% with 0.005<MAF< = 0.01, 78% or 57% with 0.01<MAF< = 0.05, and 97% or 86% with MAF>0.05. The performance for common SNPs (MAF>0.05) within exons and flanking regions is comparable to imputation of more uniformly distributed SNPs. The performance for rare SNPs (0.01<MAF< = 0.05) was much more dependent on the GWAS panel and the number of reference samples. These results suggest routine use of genotype imputation for extending the assessment of common variants identified in humans via targeted exon resequencing into additional samples with GWAS data, but imputation of very rare variants (MAF< = 0.005) will require reference panels with thousands of subjects

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Pharmacogenetic meta-analysis of baseline risk factors, pharmacodynamic, efficacy and tolerability endpoints from two large global cardiovascular outcomes trials for darapladib

    No full text
    Darapladib, a lipoprotein-associated phospholipase A2 (Lp-PLA(2)) inhibitor, failed to demonstrate efficacy for the primary endpoints in two large phase III cardiovascular outcomes trials, one in stable coronary heart disease patients (STABILITY) and one in acute coronary syndrome (SOLID-TIMI 52). No major safety signals were observed but tolerability issues of diarrhea and odor were common (up to 13%). We hypothesized that genetic variants associated with Lp-PLA(2) activity may influence efficacy and tolerability and therefore performed a comprehensive pharmacogenetic analysis of both trials. We genotyped patients within the STABILITY and SOLID-TIMI 52 trials who provided a DNA sample and consent (n = 13,577 and 10,404 respectively, representing 86% and 82% of the trial participants) using genomewide arrays with exome content and performed imputation using a 1000 Genomes reference panel. We investigated baseline and change from baseline in Lp-PLA(2) activity, two efficacy endpoints (major coronary events and myocardial infarction) as well as tolerability parameters at genome-wide and candidate gene level using a meta-analytic approach. We replicated associations of published loci on baseline Lp-PLA2 activity (APOE, CELSR2, LPA, PLA2G7, LDLR and SCARB1) and identified three novel loci (TOMM5, FRMD5 and LPL) using the GWAS-significance threshold P &lt;= 5E-08. Review of the PLA2G7 gene (encoding Lp-PLA(2)) within these datasets identified V279F null allele carriers as well as three other rare exonic null alleles within various ethnic groups, however none of these variants nor any other loci associated with Lp-PLA(2) activity at baseline were associated with any of the drug response endpoints. The analysis of darapladib efficacy endpoints, despite low power, identified six low frequency loci with main genotype effect (though with borderline imputation scores) and one common locus (minor allele frequency 0.24) with genotype by treatment interaction effect passing the GWAS-significance threshold. This locus conferred risk in placebo subjects, hazard ratio (HR) 1.22 with 95% confidence interval (CI) 1.11-1.33, but was protective in darapladib subjects, HR 0.79 ( 95% CI 0.71-0.88). No major loci for tolerability were found. Thus, genetic analysis confirmed and extended the influence of lipoprotein loci on Lp-PLA(2) levels, identified some novel null alleles in the PLA2G7 gene, and only identified one potentially efficacious subgroup within these two large clinical trials

    Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation

    Get PDF
    Increased adiponectin levels have been shown to be associated with a lower risk of type 2 diabetes. To understand the relations between genetic variation at the adiponectin-encoding gene, ADIPOQ, and adiponectin levels, and subsequently its role in disease, we conducted a deep resequencing experiment of ADIPOQ in 14,002 subjects, including 12,514 Europeans, 594 African Americans, and 567 Indian Asians. We identified 296 single nucleotide polymorphisms (SNPs), including 30 amino acid changes, and carried out association analyses in a subset of 3,665 subjects from two independent studies. We confirmed multiple genome-wide association study findings and identified a novel association between a low-frequency SNP (rs17366653) and adiponectin levels (P = 2.2E-17). We show that seven SNPs exert independent effects on adiponectin levels. Together, they explained 6% of adiponectin variation in our samples. We subsequently assessed association between these SNPs and type 2 diabetes in the Genetics of Diabetes Audit and Research in Tayside Scotland (GO-DARTS) study, comprised of 5,145 case and 6,374 control subjects. No evidence of association with type 2 diabetes was found, but we were also unable to exclude the possibility of substantial effects (e.g., odds ratio 95% CI for rs7366653 [0.91-1.58]). Further investigation by large-scale and well-powered Mendelian randomization studies is warranted
    corecore