18 research outputs found

    Radical radiotherapy for paediatric solid tumour metastases:An overview of current European protocols and outcomes of a SIOPE multicenter survey

    Get PDF
    Purpose/objective: About 20% of children with solid tumours (ST) present with distant metastases (DM). Evidence regarding the use of radical radiotherapy of these DM is sparse and open for personal interpretation. The aim of this survey was to review European protocols and to map current practice regarding the irradiation of DM across SIOPE-affiliated countries. Materials/methods: Radiotherapy guidelines for metastatic sites (bone, brain, distant lymph nodes, lung and liver) in eight European protocols for rhabdomyosarcoma, non-rhabdomyosarcoma soft-tissue sarcoma, Ewing sarcoma, neuroblastoma and renal tumours were reviewed. SIOPE centres irradiating >= 50 children annually were invited to participate in an online survey. Results: Radiotherapy to at least one metastatic site was recommended in all protocols, except for high-risk neuroblastoma. Per protocol, dose prescription varied per site, and information on delineation and treatment planning/delivery was generally missing. Between July and September 2019, 20/27 centres completed the survey. Around 14% of patients were deemed to have DM from ST at diagnosis, of which half were treated with curative intent. A clear cut-off for a maximum number of DM was not used in half of the centres. Regardless of the tumour type and site, conventional radiotherapy regimens were most commonly used to treat DM. When stereotactic radiotherapy was used, a wide range of fractionation regimens were applied. Conclusion: Current radiotherapy guidelines for DM do not allow a consistent approach in a multicentre setting. Prospective (randomised) trials are needed to define the role of radical irradiation of DM from paediatric ST. (C) 2020 The Author(s). Published by Elsevier Ltd

    Controversies and Perspectives in the Use of Postoperative Radiotherapy for Prostate Cancer

    No full text
    The use of radical prostatectomy in patients with high risk of recurrence has significantly increased during the past 10 years. Thus, adjuvant radiation as a part of multimodality treatment or salvage radiation at the evidence of prostate-specific antigen (PSA) progression represents mainstay curative-intent options for a great number of prostate cancer patients. Although, few randomized trials and many retrospective studies have been published, many uncertainties still mold the discussions on the best treatment management for men after prostatectomy. This research topic successfully intended to foster discussions on current controversies in the use of postoperative radiotherapy and to present novel perspectives for treatment optimization

    Pharmacotherapeutic management of locally advanced prostate cancer: Current status

    No full text
    Locally advanced prostate cancer (LAPC) is a heterogeneous entity usually embracing T3-4 and/or pelvic lymph-node-positive disease in the absence of established metastases. Outcomes for LAPC with single therapies have traditionally been poor, leading to the investigation of adjuvant therapies. Prostate cancer is a hormonally sensitive tumour, which usually responds to pharmacological manipulation of the androgen receptor or its testosterone-related ligands. As such, androgen deprivation therapy (ADT) has become an important adjuvant strategy for the treatment of LAPC, particularly for patients managed primarily with radiotherapy. Such results have generally not been replicated in surgical patients. With increased use of ADT has come improved awareness of the numerous toxicities associated with long-term use of these agents, as well as the development of strategies for minimizing ADT exposure and actively managing adverse effects. Several trials are exploring agents to enhance radiation cell sensitivity as well as the application of adjuvant docetaxel, an agent with proven efficacy in the metastatic, castrate-resistant setting. The recent work showing activity of cabazitaxel, sipuleucel-T and abiraterone for castrate-resistant disease in the post-docetaxel setting will see these agents investigated in conjunction with definitive surgery and radiotherapy

    Mechanistic insights into molecular targeting and combined modality therapy for aggressive, localized prostate cancer

    Get PDF
    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: I. androgen signaling pathway; II. hypoxic tumor cells and regions; III. DNA damage response (DDR) pathway; and IV. abnormal extra/intra-cell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa

    microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation

    No full text
    International audienceAs the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes

    Local dose analysis to predict acute and late urinary toxicities after prostate cancer radiotherapy: Assessment of cohort and method effects

    No full text
    International audiencePURPOSE:To perform bladder dose-surface map (DSM) analysis for (1) identifying symptom-related sub-surfaces (Ssurf) and evaluating their prediction capability of urinary toxicity, (2) comparing DSM with dose-volume map (DVM) (method effect), and (3) assessing the reproducibility of DSM (cohort effect).METHODS AND MATERIALS:Urinary toxicities were prospectively analyzed for 254 prostate cancer patients treated with IMRT/IGRT at 78/80 Gy. DSMs were generated by unfolding bladder surfaces in a 2D plane. Pixel-by-pixel analysis was performed to identify symptom-related Ssurf. Likewise, voxel-by-voxel DVM analysis was performed to identify sub-volumes (Svol). The prediction capability of Ssurf and Svol DVHs was assessed by logistic/Cox regression using the area under the ROC curve (AUC). The Ssurf localization and prediction capability were compared to (1) the Svol obtained by DVM analysis in the same cohort and (2) the Ssurf obtained from other DSM studies.RESULTS:Three Ssurf were identified in the bladder: posterior for acute retention (AUC = 0.64), posterior-superior for late retention (AUC = 0.68), and inferior-anterior-lateral for late dysuria (AUC = 0.73). Five Svol were identified: one in the urethra for acute incontinence and four in the posterior bladder part for acute and late retention, late dysuria, and hematuria. The overlap between Ssurf and Svol was moderate for acute retention, good for late retention, and bad for late dysuria, and AUCs ranged from 0.62 to 0.81. The prediction capabilities of Ssurf and Svol models were not significantly different. Among five symptoms comparable between cohorts, common Ssurf was found only for late dysuria, with a good spatial agreement.CONCLUSION:Spatial agreement between methods is relatively good although DVM identified more sub-regions. Reproducibility of identified Ssurf between cohorts is low
    corecore