179 research outputs found
Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity
Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca2+ signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity
The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signalling axis
Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein β-arrestin2 (β-arr2) regulates tumor suppressor p53 by counteracting Mdm2. β-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. β-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. β-arr2 can be SUMOylated, but no information is available on how SUMO may regulate β-arr2 nucleocytoplasmic shuttling. While we found β-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and β-arr2, via a SUMO interaction motif (SIM), that is required for β-arr2 cytonuclear trafficking. This SIM promotes association of β-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective β-arr2 nuclear entry. Mutation of the SIM inhibits β-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a β-arr2 SIM nuclear entry checkpoint, coupled with active β-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis
A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion
The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption
PRMT5 promotes full-length HTT expression by repressing multiple proximal intronic polyadenylation sites
Expansion of the CAG trinucleotide repeat tract in exon 1 of the Huntingtin (HTT) gene causes Huntington’s disease (HD) through the expression of a polyglutamine-expanded form of the HTT protein. This mutation triggers cellular and biochemical pathologies, leading to cognitive, motor, and psychiatric symptoms in HD patients. Targeting HTT splicing with small molecule drugs is a compelling approach to lowering HTT protein levels to treat HD, and splice modulators are currently being tested in the clinic. Here, we identify PRMT5 as a novel regulator of HTT messenger RNA (mRNA) splicing and alternative polyadenylation. PRMT5 inhibition disrupts the splicing of HTT introns 9 and 10, leading to the activation of multiple proximal intronic polyadenylation sites within these introns and promoting premature termination, cleavage, and polyadenylation of the HTT mRNA. This suggests that HTT protein levels may be lowered due to this mechanism. We also detected increasing levels of these truncated HTT transcripts across a series of neuronal differentiation samples, which correlated with lower PRMT5 expression. Notably, PRMT5 inhibition in glioblastoma stem cells potently induced neuronal differentiation. We posit that PRMT5-mediated regulation of intronic polyadenylation, premature termination, and cleavage of the HTT mRNA modulates HTT expression and plays an important role during neuronal differentiation
Faculty Opinions recommendation of A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression.
Faculty Opinions recommendation of Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo.
Abstract IA06: Leveraging genome-wide CRISPR screens and synthetic lethal interactions for novel cancer therapeutics
Abstract
Forward genetic screens with CRISPR-Cas9 genome editing enable high-resolution detection of genetic vulnerabilities in cancer cells. We conducted genome-wide CRISPR-Cas9 screens in RNF43 mutant pancreatic ductal adenocarcinoma (PDAC) cells, which rely on Wnt signaling for proliferation, and discovered a unique requirement for a Wnt signaling circuit engaging FZD5, one of the ten Frizzled receptors encoded in the human genome. Our results uncover an underappreciated level of context dependent specificity at the Wnt receptor level. We further derived a panel of recombinant antibodies that reports the expression of nine FZD proteins and confirm that FZD5 functional specificity cannot be explained by protein expression patterns. Antibodies that specifically bind FZD5 and FZD8 also robustly inhibited the growth of RNF43 mutant PDAC cells grown in vitro and as xenografts in vivo, providing strong orthogonal support for the functional specificity observed genetically. Proliferation of a patient-derived PDAC cell line harboring a RNF43 variant previously associated with PDAC was also selectively inhibited by the FZD5 antibodies, further demonstrating their use as a potential targeted therapy. Highlighting the potential generalizability of these findings, beyond PDAC, tumor organoid cultures from colorectal carcinoma patients that carried RNF43 mutations were also sensitive to the FZD5 antibodies. Our results provide the first example of how CRIPSR-based genetic screens can be leveraged to identify and validate cell surface targets for antibody development and cancer therapy.
Citation Format: Stephane Angers. Leveraging genome-wide CRISPR screens and synthetic lethal interactions for novel cancer therapeutics [abstract]. In: Proceedings of the AACR Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer; Jan 4-7, 2017; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2017;16(10 Suppl):Abstract nr IA06.</jats:p
Wnt signaling inhibition confers induced synthetic lethality to PARP inhibitors
Despite considerable efforts, therapeutic strategies targeting the Wnt pathway are still not clinically available. The pervasive role of Wnt‐βcatenin signaling for the control of stem cells during normal tissue homeostasis makes the on‐target toxicity of available therapeutic grade molecules an important limitation preventing their clinical introduction. The article in this issue of EMBO Molecular Medicine by Kaur et al (2021) reveals that treatment of Wnt‐addicted cancer cells with inhibitors of Wnt signaling induces a state of BRCAness leading to hypersensitivity to PARP inhibitors. This is a new example of induced synthetic lethality that could pave the way for new indications for PARP inhibitors or may contribute to the long‐awaited clinical introduction of therapeutic agents targeting the Wnt pathway
Proteomic Analyses of Protein Complexes in the Wnt Pathway
Multiple screens performed in Drosophila, Caenorhabditis elegans, Xenopus, and zebrafish have identified dozens of proteins participating in Wnt signal transduction. Epistasis experiments, enhancer and suppres-sor screens, and protein–protein interaction techniques have also been efficient at finding new pathway members, connecting proteins together, and establishing the architectural framework of how the Wnt signaling pathway functions. In the last few years, spectacular technological breakthroughs in the field of mass spectrometry have allowed the study of proteins and peptides with unprecedented sensitivity and accuracy. Recently, we have developed methods to study the Wnt pathway using mass spectrometry by studying the composition of protein complexes isolated from mammalian cells. In addition to identifying novel proteins acting in this pathway, this approach is providing information about the supramolecular organization of the protein complexes in the pathway and how the individual proteins are activated and regulated. This chapter details the experimental procedure that we developed to study mammalian pro-tein complexes using a gel-free mass spectrometry approach
- …
