25 research outputs found

    MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen

    Get PDF
    Additional file 2: Figure S2. Representative flow cytometric histograms of CRC cell lines 72 h post transfection with pre-miR-210 and a control miRNA, respectively. Cells were stained with by PI staining and subjected to FACS analysis

    Quantitative Histomorphometry of the Healthy Peritoneum

    Get PDF
    The peritoneum plays an essential role in preventing abdominal frictions and adhesions and can be utilized as a dialysis membrane. Its physiological ultrastructure, however, has not yet been studied systematically. 106 standardized peritoneal and 69 omental specimens were obtained from 107 patients (0.1–60 years) undergoing surgery for disease not affecting the peritoneum for automated quantitative histomorphometry and immunohistochemistry. The mesothelial cell layer morphology and protein expression pattern is similar across all age groups. Infants below one year have a thinner submesothelium; inflammation, profibrotic activity and mesothelial cell translocation is largely absent in all age groups. Peritoneal blood capillaries, lymphatics and nerve fibers locate in three distinct submesothelial layers. Blood vessel density and endothelial surface area follow a U-shaped curve with highest values in infants below one year and lowest values in children aged 7–12 years. Lymphatic vessel density is much lower, and again highest in infants. Omental blood capillary density correlates with parietal peritoneal findings, whereas only few lymphatic vessels are present. The healthy peritoneum exhibits major thus far unknown particularities, pertaining to functionally relevant structures, and subject to substantial changes with age. The reference ranges established here provide a framework for future histomorphometric analyses and peritoneal transport modeling approaches

    Assessment of PI3K/mTOR/AKT Pathway Elements to Serve as Biomarkers and Therapeutic Targets in Penile Cancer

    Get PDF
    The PI3K/mTOR/AKT pathway might represent an intriguing option for treatment of penile cancer (PeCa). We aimed to assess whether members of this pathway might serve as biomarkers and targets for systemic therapy. Tissue of primary cancer from treatment-naïve PeCa patients was used for tissue microarray analysis. Immunohistochemical staining was performed with antibodies against AKT, pAKT, mTOR, pmTOR, pS6, pPRAS, p4EBP1, S6K1 and pp70S6K. Protein expression was correlated with clinicopathological characteristics as well as overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS) and metastasis-free survival (MFS). AKT inhibition was tested in two primarily established, treatment-naïve PeCa cell lines by treatment with capivasertib and analysis of cell viability and chemotaxis. A total of 76 patients surgically treated for invasive PeCa were included. Higher expression of AKT was significantly more prevalent in high-grade tumors and predictive of DSS and OS in the Kaplan–Meier analysis, and an independent predictor of worse OS and DSS in the multivariate regression analysis. Treatment with pan-AKT inhibitor capivasertib in PeCa cell lines induced a significant downregulation of both total AKT and pAKT as well as decreased cell viability and chemotaxis. Selected protein candidates of the mTOR/AKT signaling pathway demonstrate association with histological and survival parameters of PeCa patients, whereas AKT appears to be the most promising one

    Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma

    Get PDF
    Background: The enhancer of zeste homolog 2 (EZH2) gene exerts oncogene-like activities and its (over)expression has been linked to several human malignancies. Here, we studied a possible association between EZH2 expression and prognosis in patients with renal cell carcinoma (RCC). Methods: EZH2 protein expression in RCC specimens was analyzed by immunohistochemistry using a tissue microarray (TMA) containing RCC tumor tissue and corresponding normal tissue samples of 520 patients. For immunohistochemical assessment of EZH2 expression, nuclear staining quantity was evaluated using a semiquantitative score. The effect of EZH2 expression on cancer specific survival (CSS) was assessed by univariate and multivariate Cox regression analyses. Results: During follow-up, 147 patients (28%) had died of their disease, median follow-up of patients still alive was 6.0 years (range 0 - 16.1 years). EZH2 nuclear staining was present in tumor cores of 411 (79%) patients. A multivariate Cox regression analysis revealed that high nuclear EZH2 expression was an independent predictor of poor CSS (>25-50% vs. 0%: HR 2.72, p = 0.025) in patients suffering from non-metastatic RCC. Apart from high nuclear EZH2 expression, tumor stage and Fuhrman's grading emerged as significant prognostic markers. In metastatic disease, nuclear EZH2 expression and histopathological subtype were independent predictive parameters of poor CSS (EZH2: 1-5%: HR 2.63, p = 0.043, >5-25%: HR 3.35, p = 0.013, >25%-50%: HR 4.92, p = 0.003, all compared to 0%: HR 0.36, p = 0.025, respectively). Conclusions: This study defines EZH2 as a powerful independent unfavourable prognostic marker of CSS in patients with metastatic and non-metastatic RCC

    EZH2 Depletion Blocks the Proliferation of Colon Cancer Cells

    Get PDF
    The Enhancer of Zeste 2 (EZH2) protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi)-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer

    Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis

    No full text
    WOS: 000439138700024PubMed ID: 29776755The effect of peritoneal dialysates with low-glucose degradation products on peritoneal membrane morphology is largely unknown, with functional relevancy predominantly derived from experimental studies. To investigate this, we performed automated quantitative histomorphometry and molecular analyses on 256 standardized peritoneal and 172 omental specimens from 56 children with normal renal function, 90 children with end-stage kidney disease at time of catheter insertion, and 82 children undergoing peritoneal dialysis using dialysates with low-glucose degradation products. Follow-up biopsies were obtained from 24 children after a median peritoneal dialysis of 13 months. Prior to dialysis, mild parietal peritoneal inflammation, epithelial-mesenchymal transition and vasculopathy were present. After up to six and 12 months of peritoneal dialysis, blood microvessel density was 110 and 93% higher, endothelial surface area per peritoneal volume 137 and 95% greater, and submesothelial thickness 23 and 58% greater, respectively. Subsequent peritoneal changes were less pronounced. Mesothelial cell coverage was lower and vasculopathy advanced, whereas lymphatic vessel density was unchanged. Morphological changes were accompanied by early fibroblast activation, leukocyte and macrophage infiltration, diffuse podoplanin presence, epithelial mesenchymal transdifferentiation, and by increased proangiogenic and profibrotic cytokine abundance. These transformative changes were confirmed by intraindividual comparisons. Peritoneal microvascular density correlated with peritoneal small-molecular transport function by uni- and multivariate analysis. Thus, in children on peritoneal dialysis neutral pH dialysates containing low-glucose degradation products induce early peritoneal inflammation, fibroblast activation, epithelial-mesenchymal transition and marked angiogenesis, which determines the PD membrane transport function.European Training and Research in Peritoneal Dialysis (EuTRiPD) Programme - European Union within the Marie Curie Scheme [287813]; Medical Faculty of the University of Heidelberg; Fresenius Medical Care (Bad Homburg, Germany); ERA-EDTA; KfH Foundation for Preventive Medicine; Baxter; Fresenius Medical CareMB was supported by the European Training and Research in Peritoneal Dialysis (EuTRiPD) Programme, a project funded by the European Union within the Marie Curie Scheme (287813). BS was supported by the Medical Faculty of the University of Heidelberg. Further support was received from Fresenius Medical Care (Bad Homburg, Germany), ERA-EDTA, and the KfH Foundation for Preventive Medicine. FS, BAW, and CPS obtained further research funding from Baxter and Fresenius Medical Care. We are grateful to Dr. E. Herpel and Mr. J. Moyers from Tissue Bank of the National Center for Tumor Diseases (NCT, Heidelberg, Germany) and Institute of Pathology (Heidelberg University Hospital) for technical assistance

    FIRST RESULTS FROM THE INTERNATIONAL PEDIATRIC PERITONEAL BIOPSY STUDY

    No full text
    50th European-Renal-Association - European-Dialysis-and-Transplant-Association Congress -- MAY 18-21, 2013 -- Istanbul, TURKEYWOS: 000319498201173…European Renal Assoc (ERA), European Dialysis & Transplant Assoc (EDTA

    Expression and Functional Characterization of the BNIP3 Protein in Renal Cell Carcinomas

    No full text
    BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) is a BH3-only protein that regulates apoptosis and autophagy. BNIP3 plays also an important role in hypoxia-induced cell response and is regulated by HIF1. Here, we studied a possible association of BNIP3 expression and the prognosis of patients with renal cell carcinomas (RCCs) and examined the functional relevance of BNIP3 in the regulation of cell survival and apoptosis of renal carcinoma cells. BNIP3 expression was determined by immunohistochemistry in RCC tumor tissue samples of 569 patients using a tissue microarray. Functional characterization of BNIP3 in renal carcinoma cells indicates prosurvival effects. In human RCC tumor samples, high cytoplasmic BNIP3 expression was associated with high-grade RCCs and regional lymph node metastasis. BNIP3 expression correlated negatively with disease-specific survival. Multivariate Cox regression analysis retained BNIP3 expression as an independent prognostic factor in patients without distant metastasis. Together, our studies imply that BNIP3 regulates cell survival in RCCs and its expression is an independent prognostic marker in patients with localized RCCs
    corecore