21 research outputs found

    Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against beta-lactam antibiotics

    Get PDF
    Objectives: To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. Methods: A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. Results: The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. Conclusions: The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics

    Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation

    Get PDF
    Background: Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Results: Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Conclusions: Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L. lactis subsp. cremoris MG1363 in the presence of initially high levels of oxygen. This enables the cells to maintain key traits that are of great importance for industry, such as rapid acidification and reduction of the redox potential of the growth media

    A Possible Aquatic Origin of the Thiaminase TenA of the Human Gut Symbiont Bacteroides thetaiotaomicron

    Get PDF
    TenA thiamin-degrading enzymes are commonly found in prokaryotes, plants, fungi and algae and are involved in the thiamin salvage pathway. The gut symbiont Bacteroides thetaiotaomicron (Bt) produces a TenA protein (BtTenA) which is packaged into its extracellular vesicles. An alignment of BtTenA protein sequence with proteins from different databases using the basic local alignment search tool (BLAST) and the generation of a phylogenetic tree revealed that BtTenA is related to TenA-like proteins not only found in a small number of intestinal bacterial species but also in some aquatic bacteria, aquatic invertebrates, and freshwater fish. This is, to our knowledge, the first report describing the presence of TenA-encoding genes in the genome of members of the animal kingdom. By searching metagenomic databases of diverse host-associated microbial communities, we found that BtTenA homologues were mostly represented in biofilms present on the surface of macroalgae found in Australian coral reefs. We also confirmed the ability of a recombinant BtTenA to degrade thiamin. Our study shows that BttenA-like genes which encode a novel sub-class of TenA proteins are sparingly distributed across two kingdoms of life, a feature of accessory genes known for their ability to spread between species through horizontal gene transfer

    In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host

    Get PDF
    The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs) are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron. These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse) we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo

    The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles

    Get PDF
    Gram-negative bacteria ubiquitously produce and release nano-size, non-replicative outer membrane vesicles (OMVs). In the gastrointestinal (GI-) tract, OMVs generated by members of the intestinal microbiota are believed to contribute to maintaining the intestinal microbial ecosystem and mediating bacteria–host interactions, including the delivery of bacterial effector molecules to host cells to modulate their physiology. Bacterial OMVs have also been found in the bloodstream although their origin and fate are unclear. Here we have investigated the interactions between OMVs produced by the major human gut commensal bacterium, Bacteroides thetaiotaomicron (Bt), with cells of the GI-tract. Using a combination of in vitro culture systems including intestinal epithelial organoids and in vivo imaging we show that intestinal epithelial cells principally acquire Bt OMVs via dynamin-dependent endocytosis followed by intracellular trafficking to LAMP-1 expressing endo-lysosomal vesicles and co-localization with the perinuclear membrane. We observed that Bt OMVs can also transmigrate through epithelial cells via a paracellular route with in vivo imaging demonstrating that within hours of oral administration Bt OMVs can be detected in systemic tissues and in particular, the liver. Our findings raise the intriguing possibility that OMVs may act as a long-distance microbiota–host communication system

    Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body

    Get PDF
    As part of their life cycle, Gram-negative bacteria produce and release microvesicles (outer membrane vesicles, OMVs) consisting of spherical protrusions of the outer membrane that encapsulate periplasmic contents. OMVs produced by commensal bacteria in the gastrointestinal (GI) tract of animals are dispersed within the gut lumen with their cargo and enzymes being distributed across and throughout the GI tract. Their ultimate destination and fate is unclear although they can interact with and cross the intestinal epithelium using different entry pathways and access underlying immune cells in the lamina propria. OMVs have also been found in the bloodstream from which they can access various tissues and possibly the brain. The nanosize and non-replicative status of OMVs together with their resistance to enzyme degradation and low pH, alongside their ability to interact with the host, make them ideal candidates for delivering biologics to mucosal sites, such as the GI and the respiratory tract. In this mini-review, we discuss the fate of OMVs produced in the GI tract of animals with a focus on vesicles released by Bacteroides species and the use of OMVs as vaccine delivery vehicles and other potential applications

    Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease

    Get PDF
    The gastrointestinal (GI) tract harbours a complex microbial community, which contributes to its homeostasis. A disrupted microbiome can cause GI-related diseases, including inflammatory bowel disease (IBD), therefore identifying host-microbe interactions is crucial for better understanding gut health. Bacterial extracellular vesicles (BEVs), released into the gut lumen, can cross the mucus layer and access underlying immune cells. To study BEV-host interactions, we examined the influence of BEVs generated by the gut commensal bacterium, Bacteroides thetaiotaomicron, on host immune cells. Single-cell RNA sequencing data and host-microbe protein-protein interaction networks were used to predict the effect of BEVs on dendritic cells, macrophages and monocytes focusing on the Toll-like receptor (TLR) pathway. We identified biological processes affected in each immune cell type and cell-type specific processes including myeloid cell differentiation. TLR pathway analysis highlighted that BEV targets differ among cells and between the same cells in healthy versus disease (ulcerative colitis) conditions. The in silico findings were validated in BEV-monocyte co-cultures demonstrating the requirement for TLR4 and Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP) in BEV-elicited NF-kB activation. This study demonstrates that both cell-type and health status influence BEV-host communication. The results and the pipeline could facilitate BEV-based therapies for the treatment of IBD

    Extracellular vesicles produced by the human gut commensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells

    Get PDF
    Bacterial extracellular vesicles (BEVs) produced by gut commensal bacteria have been proposed to play an important role in maintaining host homeostasis via interactions with the immune system. Details of the mediators and pathways of BEV-immune cell interactions are however incomplete. In this study, we provide evidence for the anti-inflammatory and immunomodulatory properties of extracellular vesicles produced by the prominent human gut commensal bacterium Bacteroides thetaiotaomicron (Bt BEVs) and identify the molecular mechanisms underlying their interaction with innate immune cells. Administration of Bt BEVs to mice treated with colitis-inducing dextran sodium sulfate (DSS) ameliorates the symptoms of intestinal inflammation, improving survival rate and reducing weight loss and disease activity index scores, in association with upregulation of IL-10 production in colonic tissue and in splenocytes. Pre-treatment (conditioning) of murine bone marrow derived monocytes (BMDM) with Bt BEVs resulted in higher ratio of IL-10/TNFα production after an LPS challenge when compared to LPS pre-conditioned or non-conditioned BMDM. Using the THP-1 monocytic cell line the interactions between Bt BEVs and monocytes/macrophages were shown to be mediated primarily by TLR2. Histone (H3K4me1) methylation analysis showed that Bt BEVs induced epigenetic reprogramming which persisted after infectious challenge, as revealed by increased levels of H3K4me1 in Bt BEV-conditioned LPS-challenged BMDM. Collectively, our findings highlight the important role of Bt BEVs in maintaining host immune homeostasis and raise the promising possibility of considering their use in immune therapies

    The Tra Domain of the Lactococcal CluA Surface Protein Is a Unique Domain That Contributes to Sex Factor DNA Transfer

    No full text
    CluA is a cell surface-presented protein that causes cell aggregation and is essential for a high-efficiency conjugation process in Lactococcus lactis. We know from previous work that in addition to promoting cell-to-cell contact, CluA is involved in sex factor DNA transfer. To define the CluA domains involved in aggregation and in transfer, we first performed random mutagenesis of the cluA gene using a modified mini-Tn7 element which generated five amino acid insertions located throughout the encoded protein. Thirty independent cluA insertion mutants expressing modified CluA proteins at the cell surface were isolated and characterized further. The level of aggregation of each mutant was determined. The cell binding capacity of CluA was affected strongly when the protein had a mutation in its N-terminal region, which defined an aggregation domain extending from amino acid 153 to amino acid 483. Of the cluA mutants that still exhibited aggregation, eight showed an attenuated ability to conjugate, and six mutations were located in a 300-amino-acid C-terminal region of the protein defining a transfer domain (Tra). This result was confirmed by a phenotypic analysis of an additional five mutants obtained using site-directed mutagenesis in which charged amino acids of the Tra domain were replaced by alanine residues. Two distinct functional domains of the CluA protein were defined in this work; the first domain is involved in cell binding specificity, and the Tra domain is probably involved in the formation of the DNA transport machinery. This is the first report of a protein involved in conjugation that actively contributes to DNA transfer and mediates contact between donor and recipient strains
    corecore