90 research outputs found

    Genetic alterations and cancer formation in a European flatfish at sites of different contamination burdens

    Get PDF
    Fish diseases are an indicator for marine ecosystem health since they provide a biological end-point of historical exposure to stressors. Liver cancer has been used to monitor the effects of exposure to anthropogenic pollution in flatfish for many years. The prevalence of liver cancer can exceed 20%. Despite the high prevalence and the opportunity of using flatfish to study environmentally induced cancer, the genetic and environmental factors driving tumor prevalence across sites are poorly understood. This study aims to define the link between genetic deterioration, liver disease progression, and anthropogenic contaminant exposures in the flatfish dab (Limanda limanda). We assessed genetic changes in a conserved cancer gene, Retinoblastoma (Rb), in association with histological diagnosis of normal, pretumor, and tumor pathologies in the livers of 165 fish from six sites in the North Sea and English Channel. The highest concentrations of metals (especially cadmium) and organic chemicals correlated with the presence of tumor pathology and with defined genetic profiles of the Rb gene, from these sites. Different Rb genetic profiles were found in liver tissue near each tumor phenotype, giving insight into the mechanistic molecular-level cause of the liver pathologies. Different Rb profiles were also found at sampling sites of differing contaminant burdens. Additionally, profiles indicated that histological “normal” fish from Dogger sampling locations possessed Rb profiles associated with pretumor disease. This study highlights an association between Rb and specific contaminants (especially cadmium) in the molecular etiology of dab liver tumorigenesis

    Effects of hematodinium infection on the Norway lobster, nephrops norvegicus (L.)

    Get PDF
    The Norway lobster (Nephrops norvegicus) is one of the most valuable shellfish resources in the north east Atlantic ocean and considerable knowledge exists with regard to its biology and life history. During the late 1980s, populations of N. norvegicus were shown to harbour an infection by a parasite of the genus Hematodinium (Dinoflagellata: Syndinidae). Although studies on the pathology, progression and prevalence of infection have since been carried out, considerable gaps exist in our knowledge of the effects of parasitism on host life history and cycling of the parasite in the field. This study aims to develop techniques for monitoring Hematodinium infection in natural populations of N. norvegicus and to study the interactions between parasite-induced pathological changes and the life history of host animals. This study has greatly increased our understanding of the complex relationship between Hematodinium parasites and their hosts. By linking biochemical and physiological data to effects observed in the field, it has been shown that Hematodinium infection may provide an excellent model system for studying stress responses in aquatic invertebrate hosts. The study has described in much greater detail than before the effect of parasitism on host lobsters, and has related these effects to the moult cycle and to host condition. Furthermore, it has shown how changes in host behaviour and locomotion during infection may be directly or indirectly linked to biochemical and physiological changes brought about by infection. The implications of these changes in the life history N. norvegicus for the availability of infected lobsters to be captured by trawlers and predators is discussed

    Disease Effects on Lobster Fisheries, Ecology, and Culture: Overview of DAO Special 6

    Get PDF
    Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator-prey relationships, competitive interactions, and host-pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Conference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceedings with a suite of articles focused on diseases discussed during that session

    Hepatocellular adenoma in a European flatfish (Limanda limanda) : genetic alterations in laser-capture microdissected tissue and global transcriptomic approach

    Get PDF
    Liver tumours in flatfish have been diagnosed using histopathology for decades to monitor the impacts of marine pollution. Here we describe the application of specific gene (retinoblastoma, Rb) profiling in laser capture micro-dissected samples, and a suppression subtractive hybridization (SSH) approach to isolate differentially expressed genes in hepatocellular adenoma (HCA) samples from dab, Limanda limanda. The Rb profiles from apparently normal and HCA micro-dissected samples of fish from the North Sea showed no significant difference, and genotypic heterogeneity within defined histological phenotypes was observed. In the SSH, sequences associated with cell signalling, cell cycle, gene expression regulation, protein transport and protein degradation were isolated. These included up-regulation of arrestin domain containing 3 (arrdc3), Rac-1 and tribbles, and down-regulation of ankyrin repeat/sterile alpha-motif domain-containing protein 1B-like (ANKS1B-like), c-fos, CDKN1B and RhoA-like sequences, previously implicated in mammalian HCA. This study offers new candidates involved in fish liver tumour development

    Microsporidia:a new taxonomic, evolutionary, and ecological synthesis

    Get PDF
    Microsporidian diversity is vast. There is a renewed drive to understand how microsporidian pathological, genomic, and ecological traits relate to their phylogeny. We comprehensively sample and phylogenetically analyse 125 microsporidian genera for which sequence data are available. Comparing these results with existing phylogenomic analyses, we suggest an updated taxonomic framework to replace the inconsistent clade numbering system, using informal taxonomic names: Glugeida (previously clades 5/3), Nosematida (4a), Enterocytozoonida (4b), Amblyosporida (3/5), Neopereziida (1), and Ovavesiculida (2). Cellular, parasitological, and ecological traits for 281 well-defined species are compared with identify clade-specific patterns across long-branch Microsporidia. We suggest that future taxonomic circumscriptions of Microsporidia should involve additional markers (SSU/ITS/LSU), and that a comprehensive suite of phenotypic and ecological traits help to predict broad microsporidian functional and lineage diversity

    Parahepatospora carcini n. gen., n. sp., a parasite of invasive Carcinus maenas with intermediate features of sporogony between the Enterocytozoon clade and other microsporidia

    Get PDF
    Parahepatospora carcini n. gen. n. sp., is a novel microsporidian parasite discovered infecting the cytoplasm of epithelial cells of the hepatopancreas of a single Carcinus maenas specimen. The crab was sampled from within its invasive range in Atlantic Canada (Nova Scotia). Histopathology and transmission electron microscopy were used to show the development of the parasite within a simple interfacial membrane, culminating in the formation of unikaryotic spores with 5-6 turns of an isofilar polar filament. Formation of a multinucleate meront (>12 nuclei observed) preceded thickening and invagination of the plasmodial membrane, and in many cases, formation of spore extrusion precursors (polar filaments, anchoring disk) prior to complete separation of pre-sporoblasts from the sporogonial plasmodium. This developmental feature is intermediate between the Enterocytozoonidae (formation of spore extrusion precursors within the sporont plasmodium) and all other Microsporidia (formation of spore extrusion precursors after separation of sporont from the sporont plasmodium). SSU rRNA-based gene phylogenies place P. carcini within microsporidian Clade IV, between the Enterocytozoonidae and the so-called Enterocytospora-clade, which includes Enterocytospora artemiae and Globulispora mitoportans. Both of these groups contain gut-infecting microsporidians of aquatic invertebrates, fish and humans. According to morphological and phylogenetic characters, we propose that P. carcini occupies a basal position to the Enterocytozoonidae. We discuss the discovery of this parasite from a taxonomic perspective and consider its origins and presence within a high profile invasive host on the Atlantic Canadian coastline

    Mikrocytids Are a Broadly Distributed and Divergent Radiation of Parasites in Aquatic Invertebrates

    Get PDF
    publisher: Elsevier articletitle: Mikrocytids Are a Broadly Distributed and Divergent Radiation of Parasites in Aquatic Invertebrates journaltitle: Current Biology articlelink: http://dx.doi.org/10.1016/j.cub.2014.02.033 content_type: article copyright: Copyright © 2014 The Authors. Published by Elsevier Ltd.The file attached is the Published/publisher’s pdf version of the articl

    ‘Candidatus Aquirickettsiella gammari’ (Gammaproteobacteria: Legionellales: Coxiellaceae): A bacterial pathogen of the freshwater crustacean Gammarus fossarum (Malacostraca: Amphipoda)

    Get PDF
    Invasive and non-native species can pose risks to vulnerable ecosystems by co-introducing bacterial pathogens. Alternatively, co-introduced bacterial pathogens may regulate invasive population size and invasive traits. We describe a novel candidate genus and species of bacteria (‘Candidatus Aquirickettsiella gammari’) found to infect Gammarus fossarum, from its native range in Poland. The bacterium develops intracellularly within the haemocytes and cells of the musculature, hepatopancreas, connective tissues, nervous system and gonad of the host. The developmental cycle of ‘Candidatus Aquirickettsiella gammari’ includes an elementary body (496.73 nm ± 37.56 nm in length, and 176.89 nm ± 36.29 nm in width), an elliptical, condensed spherical stage (737.61 nm ± 44.51 nm in length and 300.07 nm ± 44.02 nm in width), a divisional stage, and a spherical initial body (1397.59 nm ± 21.26 nm in diameter). We provide a partial genome for ‘Candidatus Aquirickettsiella gammari’, which clades phylogenetically alongside environmental 16S rRNA sequences from aquatic habitats, and bacterial symbionts from aquatic isopods (Asellus aquaticus), grouping separately from the Rickettsiella, a genus that includes bacterial pathogens of terrestrial insects and isopods. Increased understanding of the diversity of symbionts carried by G. fossarum identifies those that might regulate host population size, or those that could pose a risk to native species in the invasive range. Identification of ‘Candidatus Aquirickettsiella gammari’ and its potential for adaptation as a biological control agent is explored
    corecore