1,411 research outputs found
Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism
The Erratum to this article has been published in Critical Care 2017 21:187
Unfortunately this article [1] was published with an error. The first and last author names are presented incorrectly. The first author name should be Pär Ingemar Johansson, or alternatively Johansson PI. The last author name should be Sisse Rye Ostrowski, or alternatively Ostrowski SR.One quarter of patients suffering from acute critical illness such as severe trauma, sepsis, myocardial infarction (MI) or post cardiac arrest syndrome (PCAS) develop severe hemostatic aberrations and coagulopathy, which are associated with excess mortality. Despite the different types of injurious “hit”, acutely critically ill patients share several phenotypic features that may be driven by the shock. This response, mounted by the body to various life-threatening conditions, is relatively homogenous and most likely evolutionarily adapted. We propose that shock-induced sympatho-adrenal hyperactivation is a critical driver of endothelial cell and glycocalyx damage (endotheliopathy) in acute critical illness, with the overall aim of ensuring organ perfusion through an injured microvasculature. We have investigated more than 3000 patients suffering from different types of acute critical illness (severe trauma, sepsis, MI and PCAS) and have found a potential unifying pathologic link between sympatho-adrenal hyperactivation, endotheliopathy, and poor outcome. We entitled this proposed disease entity, shock-induced endotheliopathy (SHINE). Here we review the literature and discuss the pathophysiology of SHINE.Peer Reviewe
Analyses of chlamydia trachomatis L2 in the background of the host cell proteome:Inclusion membrane proteins
Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix
Over-represented biological processes by gene ontology analysis of proteins identified in the secretome fraction. (DOCX 63 kb
Oral Polio Vaccination and Hospital Admissions With Non-Polio Infections in Denmark:Nationwide Retrospective Cohort Study
Background. Live vaccines may have nonspecific beneficial effects on morbidity and mortality. This study examines whether children who had the live-attenuated oral polio vaccine (OPV) as the most recent vaccine had a different rate of admissions for infectious diseases than children with inactivated diphtheria-tetanus-pertussis-polio-Haemophilus influenzae type b vaccine (DTaP-IPV-Hib) or live measles-mumps-rubella vaccine (MMR) as their most recent vaccine. Methods. A nationwide, register-based, retrospective cohort study of 137 403 Danish children born 1997–1999, who had received 3 doses of DTaP-IPV-Hib, were observed from 24 months (first OPV dose) to 36 months of age. Results. Oral polio vaccine was associated with a lower rate of admissions with any type of non-polio infection compared with DTaP-IPV-Hib as most recent vaccine (adjusted incidence rate ratio [IRR], 0.85; 95% confidence interval [CI], .77–.95). The association was separately significant for admissions with lower respiratory infections (adjusted IRR, 0.73; 95% CI, .61–.87). The admission rates did not differ for OPV versus MMR. Conclusions. Like MMR, OPV was associated with fewer admissions for lower respiratory infections than having DTaP-IPV-Hib as the most recent vaccination. Because OPV is now being phased-out globally, further studies of the potential beneficial nonspecific effects of OPV are warranted
Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry.
We used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation. The combination of confident CID and ECD identification and confident CID and ECD localization is particularly valuable in cases where a phosphopeptide is identified just once within a phosphoproteomics experiment
Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides
Previously we have shown that the presence of 3-nitrotyrosine within a peptide sequence severely depletes the peptide backbone fragments typically observed following electron capture dissociation (ECD) mass spectrometry. Instead, ECD of nitrated peptides is characterised by abundant losses of small neutrals (hydroxyl radicals, water and ammonia). Here, we investigate the origin of ammonia loss by comparing the ECD behaviour of lysine- and arginine-containing nitrated peptides, and their N-acetylated counterparts, and nitrated peptides containing no basic amino acid residues. The results reveal that ammonia loss derives from the N-terminus of the peptides, however, the key finding of this work is the insight provided into the hierarchy of various proposed ECD mechanisms: the Utah-Washington mechanism, the electron predator mechanism and the Oslo mechanism
Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology
AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies
Neutrophil extracellular traps in ulcerative colitis:A proteome analysis of intestinal biopsies
- …
