301 research outputs found

    Acetic acid conversion to ketene on Cu2O(1 0 0): Reaction mechanism deduced from experimental observations and theoretical computations

    Get PDF
    Ketene, a versatile reagent in production of fine and specialty chemicals, is produced from acetic acid. We investigate the synthesis of ketene from acetic acid over the (3,0;1,1) surface of Cu2O(1 0 0) through analysis of the adsorption and desorption characteristics of formic and acetic acids. The results allow us to establish a reaction mechanism for ketene formation. Observations from x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy, and temperature programmed desorption (TPD), supported by a comparison with formic acid results, suggest that acetic acid reacts with Cu2O through deprotonation to form acetate species coordinated to copper sites and hydroxylation of nearby surface oxygen sites. For formic acid the decomposition of adsorbed formate species results in desorption of CO2 and CO while, for acetic acid, high yields of ketene are observed at temperature >500 K. Modeling by density functional theory (DFT) confirms the strong interaction of acetic acid with the (3,0;1,1) surface and the spontaneous dissociation into adsorbed acetate and hydrogen atom species, the latter forming an OH-group. In an identified reaction intermediate ketene binds via all C and O atoms to Cu surface sites, in agreement with interpretations from XPS. In the vicinity of the adsorbate the surface experiences a local reorganization into a c(2 7 2) reconstruction. The total computed energy barrier for ketene formation is 1.81 eV in good agreement with the 1.74 eV obtained from TPD analysis. Our experimental observations and mechanistic DFT studies suggests that Cu2O can operate as an efficient catalyst for the green generation of ketene from acetic acid

    Mutualism and asexual reproduction influence recognition genes in a fungal symbiont

    Get PDF
    Mutualism between microbes and insects is common and alignment of the reproductive interests of microbial symbionts with this lifestyle typically involves clonal reproduction and vertical transmission by insect partners. Here the Amylostereum funguseSirex woodwasp mutualism was used to consider whether their prolonged association and predominance of asexuality have affected the mating system of the fungal partner. Nucleotide information for the pheromone receptor gene rab1, as well as the translation elongation factor 1a gene and ribosomal RNA internal transcribed spacer region were utilized. The identification of rab1 alleles in Amylostereum chailletii and Amylostereum areolatum populations revealed that this gene is more polymorphic than the other two regions, although the diversity of all three regions was lower than what has been observed in free-living Agaricomycetes. Our data suggest that suppressed recombination might be implicated in the diversification of rab1, while no evidence of balancing selection was detected. We also detected positive selection at only two codons, suggesting that purifying selection is important for the evolution of rab1. The symbiotic relationship with their insect partners has therefore influenced the diversity of this gene and influenced the manner in which selection drives and maintains this diversity in A. areolatum and A. chailletii.The National Research Foundation (NRF), members of the Tree Pathology Cooperative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry (DTI), South Africa.http://www.elsevier.com/locate/funbiohb201

    Treatment adherence with the easypod™ growth hormone electronic auto-injector and patient acceptance: survey results from 824 children and their parents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurately monitoring adherence to treatment with recombinant human growth hormone (r-hGH) enables appropriate intervention in cases of poor adherence. The electronic r-hGH auto-injector, easypod™, automatically records the patient's adherence to treatment. This study evaluated adherence to treatment of children who started using the auto-injector and assessed opinions about the device.</p> <p>Methods</p> <p>A multicentre, multinational, observational 3-month survey in which children received r-hGH as part of their normal care. Physicians reviewed the recorded dose history and children (with or without parental assistance) completed a questionnaire-based survey. Children missing ≤2 injections per month (92% of injections given) were considered adherent to treatment. Adherence was compared between GH treatment-naïve and treatment-experienced children.</p> <p>Results</p> <p>Of 834 recruited participants, 824 were evaluated. The median (range) age was 11 (1-18) years. From the recorded dose history, 87.5% of children were adherent to treatment over the 3-month period. Recorded adherence was higher in treatment-naïve (89.7%, n = 445/496) than in treatment-experienced children (81.7%, n = 152/186) [Fisher's exact test FI(X) = 7.577; <it>p </it>= 0.0062]. According to self-reported data, 90.2% (607/673) of children were adherent over 3 months; 51.5% (421/817) missed ≥1 injection over this period (mainly due to forgetfulness). Concordance between reported and recorded adherence was 84.3%, with a trend towards self-reported adherence being higher than recorded adherence. Most children liked the auto-injector: over 80% gave the top two responses from five options for ease of use (720/779), speed (684/805) and comfort (716/804). Although 38.5% (300/780) of children reported pain on injection, over half of children (210/363) considered the pain to be less or much less than expected. Given the choice, 91.8% (732/797) of children/parents would continue using the device.</p> <p>Conclusions</p> <p>easypod™ provides an accurate method of monitoring adherence to treatment with r-hGH. In children who received treatment with r-hGH using easypod™, short-term adherence is good, and significantly higher in treatment-naïve children compared with experienced children. Children/parents rate the device highly. The high level of acceptability of the device is reflected by a desire to continue using it by over 90% of the children in the survey.</p

    Gene expression associated with vegetative incompatibility in Amylostereum areolatum

    Get PDF
    In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.The Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry (DTI) South Africa, as well as the National Research Foundation (NRF).http://www.elsevier.com/locate/yfgbinf201

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation

    Get PDF
    The ecology and physiology of ectomycorrhizal (EcM) symbiosis with conifer trees are well documented. In comparison, however, very little is known about the molecular regulation of these associations. In an earlier study, we identified three EcM-regulated Pinus expressed sequence tags (EST), two of which were identified as homologous to the Medicago truncatula nodulin MtN21. The third EST was a homologue to the receptor-like kinase Clavata1. We have characterized the expression patterns of these genes and of auxin- and mycorrhiza-regulated genes after induction with indole-3-butyric acid in Pinus sylvestris and in a time course experiment during ectomycorrhizal initiation with the co-inoculation of 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Our results suggest that different P. sylvestris nodulin homologues are associated with diverse processes in the root. The results also suggest a potential role of the Clv1-like gene in lateral root initiation by the ectomycorrhizal fungus

    Diplodia Tip Blight on Its Way to the North: Drivers of Disease Emergence in Northern Europe

    Get PDF
    Disease emergence in northern and boreal forests has been mostly due to tree-pathogen encounters lacking a co-evolutionary past. However, outbreaks involving novel interactions of the host or the pathogen with the environment have been less well documented. Following an increase of records in Northern Europe, the first large outbreak of Diplodia sapinea on Pinus sylvestris was discovered in Sweden in 2016. By reconstructing the development of the epidemic, we found that the attacks started approx. 10 years back from several isolated trees in the stand and ended up affecting almost 90% of the trees in 2016. Limited damage was observed in other plantations in the surroundings of the affected stand, pointing to a new introduced pathogen as the cause of the outbreak. Nevertheless, no genetic differences based on SSR markers were found between isolates of the outbreak area and other Swedish isolates predating the outbreak or from other populations in Europe and Asia Minor. On a temporal scale, we saw that warm May and June temperatures were associated with higher damage and low tree growth, while cold and rainy conditions seemed to favor growth and deter disease. At a spatial scale, we saw that spread occurred predominantly in the SW aspect-area of the stand. Within that area and based on tree-ring and isotope (δ13C) analyses, we saw that disease occurred on trees that over the years had shown a lower water-use efficiency (WUE). Spore traps showed that highly infected trees were those producing the largest amount of inoculum. D. sapinea impaired latewood growth and reduced C reserves in needles and branches. D. sapinea attacks can cause serious economic damage by killing new shoots, disrupting the crown, and affecting the quality of stems. Our results show that D. sapinea has no limitations in becoming a serious pathogen in Northern Europe. Management should focus on reducing inoculum, especially since climate change may bring more favorable conditions for this pathogen. Seedlings for planting should be carefully inspected as D. sapinea may be present in a latent stage in asymptomatic tissues
    corecore