275 research outputs found

    Contributions of Cell-extrinsic and Cell-intrinsic Factors to the Differentiation of a Neural-crest-derived Neuroendocrine Progenitor Cell

    Get PDF
    A central question in developmental neurobiology concerns the mechanisms that generate cellular diversity in the vertebrate nervous system. Cell lineage analyses have established that many progenitor cells in the developing nervous system are multipotent (Turner and Cepko 1987; Holt et al. 1988; Wetts and Fraser 1988). However, the mechanisms that control the differentiation of such progenitor cells are poorly understood

    Assessment of vocal cord nodules: A case study in speech processing by using Hilbert-Huang Transform

    Get PDF
    Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords' overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients' voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice

    The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation

    Get PDF
    The growth regulating factor CTGF/CCN-2 is an integral factor in growth and development, connective tissue maintenance, wound repair and cell cycle regulation. It has recently been reported that CTGF/CCN-2 is involved in very early development having been detected in early notochord formation in zebrafish using CTGF/CCN-2 promoter-driven green fluorescent protein (GFP) plasmids. In these studies fluorescence was detected early in the developing embryos, a finding of considerable significance in that CTGF/CCN-2 deficient mutant mice die early after birth due to severe cartilage and skeletal dysplasia and respiratory failure. Such findings confirm the importance of CTGF/CCN-2 in development and of the necessary and sufficient role of this molecule in formation of the skeleton, extracellular matrix and chondrogenesis. Of particular relevance to the relationship between the notochordal cell and CTGF/CCN-2 there is a remarkable sub-species of canine, the ‘non-chondrodystrophic’ canine that is protected from developing degenerative disc disease (DDD). These animals are unique in that they preserve the population of notochordal cells within their disc nucleus (NP) and these cells secrete CTGF/CCN-2. We have detected CTGF/CCN-2 within conditioned medium developed from the notochordal cells of these animals (NCCM) and used this conditioned medium to demonstrate robustly increased proteoglycan production. The addition of recombinant human CTGF/CCN-2 to totally serum-free media containing cultures of bovine NP cells replicated the robustly increased aggrecan gene expression found with NCCM alone strongly suggesting the importance of the effect of CTGF/CCN-2 in notochordal cell biology within the disc nucleus of non-chondrodystrophic canines. The chondrodystrophic canine, another sub-species on the other hand are almost totally devoid of notochordal cells and they develop DDD profoundly and early. These two sub-species of canine reflect a naturally occurring animal model that is an excellent example of differential notochordal cell survival and possible associated developmental differences in extracellular maintenance

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left

    A systematic genome-wide analysis of zebrafish protein-coding gene function

    Get PDF
    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches1, 2, 3 and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes3, 4, this number falls considerably short of the more than 22,000 mouse protein-coding genes5. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning6, insertional mutagenesis7, 8, 9, antisense morpholino oligonucleotides10, targeted re-sequencing11, 12, 13, and zinc finger and TAL endonucleases14, 15, 16, 17 have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes18. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence18, 19, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis

    A Comparative Survey of the Frequency and Distribution of Polymorphism in the Genome of Xenopus tropicalis

    Get PDF
    Naturally occurring DNA sequence variation within a species underlies evolutionary adaptation and can give rise to phenotypic changes that provide novel insight into biological questions. This variation exists in laboratory populations just as in wild populations and, in addition to being a source of useful alleles for genetic studies, can impact efforts to identify induced mutations in sequence-based genetic screens. The Western clawed frog Xenopus tropicalis (X. tropicalis) has been adopted as a model system for studying the genetic control of embryonic development and a variety of other areas of research. Its diploid genome has been extensively sequenced and efforts are underway to isolate mutants by phenotype- and genotype-based approaches. Here, we describe a study of genetic polymorphism in laboratory strains of X. tropicalis. Polymorphism was detected in the coding and non-coding regions of developmental genes distributed widely across the genome. Laboratory strains exhibit unexpectedly high frequencies of genetic polymorphism, with alleles carrying a variety of synonymous and non-synonymous codon substitutions and nucleotide insertions/deletions. Inter-strain comparisons of polymorphism uncover a high proportion of shared alleles between Nigerian and Ivory Coast strains, in spite of their distinct geographical origins. These observations will likely influence the design of future sequence-based mutation screens, particularly those using DNA mismatch-based detection methods which can be disrupted by the presence of naturally occurring sequence variants. The existence of a significant reservoir of alleles also suggests that existing laboratory stocks may be a useful source of novel alleles for mapping and functional studies

    A Loss of Function Screen of Identified Genome-Wide Association Study Loci Reveals New Genes Controlling Hematopoiesis

    Get PDF
    The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits

    NASA's Robotic Lunar Lander Development Program

    Get PDF
    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed
    corecore