500 research outputs found

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Turbulent Energy Dissipation Rate and Turbulence Scales in the Blade Region of a Self-Aspirating Disk Impeller

    Get PDF
    Instantaneous radial and axial velocitieques of water in the tank with a self-aspirating disk impeller operating without gas dispersion were measured by the PIV method. A comparison of mean square velocity pulsations confirmed previous observations that the area in which turbulence is non-isotropic is small and extends about 3 mm above and under the impeller and radially 12,5 mm from the impeller blade tip. Based on velocity measurements, the distributions of energy dissipation rates were determined using the dimensional equation = C•u’3/D and Smagorinsky model. Adoption of the results of the dimensional equation as a reference value allowed us to determine the Smagorinsky constant value. This value appeared to be smaller than the values given in the literature. It has been shown that eddies in a small space near the impeller had sufficient energy to break up gas bubbles flowing out of the impeller. Based on the obtained energy dissipation rate distributions, appropriate turbulence scales were determined

    Limb segment inclination sense in proprioception

    Full text link
    Two experiments were performed to determine if proprioceptive signals are perceived more readily in terms of limb segment inclinations to the vertical than as joint angles. Subjects attempted to match arm positions with the upper arms supported at different inclinations. Constant error data showed that, when instructed to match forearm inclinations to the vertical, subjects were very accurate. When required to match elbow joint angles, however, errors were strongly biased in the direction of matching forearm inclinations. The results support a view of proprioception as a system in which afferent signals related to the gravitational torques acting at joints lead to the perception of limb orientation rather than joint angles. Such a system would allow more efficient determination of the relationship of limb segments to external objects than would one based purely on joint angles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46557/1/221_2004_Article_BF00270697.pd

    Force production characteristics in Parkinson's disease

    Get PDF
    This experiment examined the preparation and the production of isometric force in Parkinson's disease (PD). PD patients, elderly, and young subjects generated force levels that were a percentage of their maximum (15, 30, 45, and 60%). Subjects were cued on the upcoming target force level and they were asked to produce the required response as fast as possible. PD patients showed a similar progression of force variability and dispersion of peak forces to that of control subjects, implying they have an accurate “internal model” of the required forces. Force production impairments were seen, however, at the within-trial level. PD patients had more irregular force-time curves that were characterized by changes in the rate of force production. The results suggest a more “noisy” output from the motor system and an inability to produce smooth forces. PD patients were also substantially slower in initiating a force production and the delay was localized in the pre-motor reaction time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46561/1/221_2004_Article_BF00253633.pd

    Cosmological constraints from lensing statistics and supernovae on the cosmic equation of state

    Get PDF
    We investigate observational constraints from lensing statistics and high-z type Ia supernovae on flat cosmological models with nonrelativistic matter and an exotic fluid with equation of state, px=(m/31)ρxp_x=(m/3 -1)\rho_x. We show that agreement with both tests at the 68% confidence level is possible if the parameter mm is low (m0.85m \lesssim 0.85) and 0.24Ωm00.380.24 \lesssim \Omega_{m0} \lesssim 0.38 with lower values of Ωm0\Omega_{m0} corresponding to higher mm. We find that a conventional cosmological constant model with Ωm00.33\Omega_{m0}\simeq 0.33 is the best fit model of the combined likelihood.Comment: 7 pages, 4 postscript figures, revtex, submitted to Phys. Rev.

    Developing Sensorimotor Countermeasures to Mitigate Post-Flight Locomotor Dysfunction

    Get PDF
    Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
    corecore