8 research outputs found

    Susceptibility to echinocandins of Candida spp. strains isolated in Italy assessed by European Committee for Antimicrobial Susceptibility Testing and Clinical Laboratory Standards Institute broth microdilution methods

    No full text
    Background: The echinocandins are recommended as first-line therapy for Candida species infections, but drug resistance, especially among Candida glabrata, is becoming more frequent. We investigated the antifungal susceptibility of anidulafungin, caspofungin, and micafungin against 584 isolates of Candida spp. (bloodstream, other sterile sites) collected from patients admitted to an Italian university hospital between 2000 and 2013. The susceptibility was evaluated using the broth microdilution method according to both the European Committee for Antimicrobial Susceptibility Testing (EUCAST EDef 7.2) and the Clinical Laboratory Standards Institute (CLSI M27-A3). The echinocandin susceptibilities were assessed on the basis of the species-specific clinical breakpoints proposed by the EUCAST version 6.1 and CLSI M27-S4 documents. The two methods were comparable by assessing essential agreement (EA), categorical agreement (CA), and Spearman's correlation analysis (rho, r). Results: The modal minimum inhibitory concentrations (MICs; mu g . mL(-1)) values by both methods (EUCAST/CLSI) for anidulafungin, caspofungin, and micafungin for each species were, respectively, as follows: C. albicans, 0.03/0.12, 0.016/0.5, and 0.016/0.008; C. parapsilosis complex, 2/1, 2/2, and 2/1; C. tropicalis, 0.06/0.12, 0.06/0.12, and 0.06/0.12; C. glabrata complex, 0.03/0.25, 0.06/0.12, and 0.03/0.06; C. guilliermondii, 2/1, 2/2, and 2/2; and C. krusei, 0.06/0.12, 0.12/0.5, and 0.06/0.12. The overall resistance rates for EUCAST/CLSI were as follows: anidulafungin, 2.5/0.9 %; caspofungin, breakpoint not available/3.8 %; micafungin, 2.7/1.5 %. Candida glabrata complex was the least susceptible to all three echinocandins, and the percentages of resistant isolates by EUCAST/CLSI were as follows: anidulafungin, 13.5/2.7 %; caspofungin, breakpoint not available/16.2 %; micafungin, 18.9/13.5 %. The overall EA was 93 % for micafungin, 92 % for anidulafungin, and 90 % for caspofungin. The CA was >90 % for all organism-drug combinations with the exception of C. glabrata and anidulafungin (89 %). Spearman's rho for EUCAST/CLSI was 0.89 (p < 0.001) for caspofungin, 0.85 (p < 0.001) for anidulafungin, and 0.83 for micafungin (p < 0.001). Conclusions: Independent of the procedure applied, no alarming resistance to the tested agents was found, although a reduced susceptibility was detected for C. glabrata complex. The EUCAST and CLSI methods produce similar MICs, indicating that using one method or the other should not result in susceptibilities different enough to affect treatment decisions

    Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin

    Get PDF
    In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts

    Environmental distribution of Cryptococcus Neoformans and Cryptococcus Gattii around the Mediterranean basin.

    No full text
    In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts
    corecore