8,006 research outputs found
Interplanetary exploration-A challenge for photovoltaics
Future U.S. interplanetary missions will be less complex and costly than past missions such as Voyager and the soon to be launched, Galileo. This is required to achieve a balanced exploration program that can be sustained within the context of a limited budget. Radioisotope thermoelectric generators (RTGs) have served as the power source for missions beyond the orbit of Mars. It is indicated that the cost to the user of these power sources will significantly increase. Solar arrays can provide a low cost alternative for a number of missions. Potential missions are identified along with concerns for implementation, and some array configurations under present investigation are reviewed
The course of solar array welding technology development
Solar array welding technology is examined from its beginnings in the late 1960's to the present. The U.S. and European efforts are compared, and significant similarities are highlighted. The utilization of welding technology for space use is shown to have been influenced by a number of subtle, secondary factors
Space applicable DOE photovoltaic technology: An update
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated
Simulated space flight testing of commercial terrestrial silicon cells
Low cost silicon solar cells manufactured for the terrestrial market are examined for possible space flight use. The results of preliminary space environmental testing are reported and discussed. In addition, a number of possible obstacles to the use of these cells is examined. It is concluded that the terrestrial industry could provide an extremely low cost and reliable cell for space use
LNRF-velocity hump-induced oscillations of a Keplerian disc orbiting near-extreme Kerr black hole: A possible explanation of high-frequency QPOs in GRS 1915+105
At least four high-frequency quasiperiodic oscillations (QPOs) at frequencies
41Hz, 67Hz, 113Hz, and 167Hz were reported in a binary system GRS 1915+105
hosting near-extreme Kerr black hole with a dimensionless spin a>0.98. We use
the idea of oscillations induced by the hump of the orbital velocity profile
(related to locally non-rotating frames - LNRF) in discs orbiting near-extreme
Kerr black holes, which are characterized by a "humpy frequency" f_h, that
could excite the radial and vertical epicyclic oscillations with frequencies
f_r, f_v. Due to non-linear resonant phenomena the combinational frequencies
are allowed as well. Assuming mass M=14.8M_sun and spin a=0.9998 for the GRS
1915+105 Kerr black hole, the model predicts frequencies f_h=41Hz, f_r=67Hz,
(f_h+f_r)=108Hz, (f_v-f_r)=170Hz corresponding quite well to the observed ones.
For black-hole parameters being in good agreement with those given
observationally, the forced resonant phenomena in non-linear oscillations,
excited by the "hump-induced" oscillations in a Keplerian disc, can explain
high-frequency QPOs in GRS 1915+105 within the range of observational errors.Comment: 4 pages, 2 figures, accepted for publication in Astronomy and
Astrophysics, added references, corrected typo
Precise toppling balance, quenched disorder, and universality for sandpiles
A single sandpile model with quenched random toppling matrices captures the
crucial features of different models of self-organized criticality. With
symmetric matrices avalanche statistics falls in the multiscaling BTW
universality class. In the asymmetric case the simple scaling of the Manna
model is observed. The presence or absence of a precise toppling balance
between the amount of sand released by a toppling site and the total quantity
the same site receives when all its neighbors topple once determines the
appropriate universality class.Comment: 5 Revtex pages, 4 figure
DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions
A continuous Flaring- to Normal-branch transition in Sco X-1
We report the first resolved rapid transition from a Flaring Branch
Oscillation to a Normal Branch Oscillation in the RXTE data of the Z source Sco
X-1. The transition took place on a time scale of ~100 seconds and was clearly
associated to the Normal Branch-Flaring Branch vertex in the color-color
diagram. We discuss the results in the context of the possible association of
the Normal Branch Oscillation with other oscillations known both in
Neutron-Star and Black-Hole systems, concentrating on the similarities with the
narrow 4-6 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 4 figures, accepted for publication in Astronomy &
Astrophysic
- …