1,013 research outputs found

    Code Remedies

    Get PDF

    Design of a horizontal neutron reflectometer for the European Spallation Source

    Full text link
    A design study of a horizontal neutron reflectometer adapted to the general baseline of the long pulse European Spallation Source (ESS) is presented. The instrument layout comprises solutions for the neutron guide, high-resolution pulse shaping and beam bending onto a sample surface being so far unique in the field of reflectometry. The length of this instrument is roughly 55 m, enabling δλ/λ\delta \lambda / \lambda resolutions from 0.5% to 10%. The incident beam is focussed in horizontal plane to boost measurements of sample sizes of 1*1 cm{^2} and smaller with potential beam deflection in both downward and upward direction. The range of neutron wavelengths untilized by the instrument is 2 to 7.1 (12.2, ...) {\AA}, if every (second, ...) neutron source ulse is used. Angles of incidence can be set between 0{\deg} and 9{\deg} with a total accessible q-range from 4*10^{-3} {\AA}^{-1} up to 1 {\AA}^{-1}. The instrument operates both in {\theta}/{\theta} (free liquid surfaces) and {\theta}/2{\theta} (solid/liquid, air/solid interfaces) geometry. The experimental setup will in particular enable direct studies on ultrathin films (d ~ 10 {\AA}) and buried monolayers to multilayered structures of up to 3000 {\AA} total thickness. The horizontal reflectometer will further foster investigations of hierarchical systems from nanometer to micrometer length scale, as well as their kinetics and dynamical properties, in particular under load (shear, pressure, external fields). Polarization and polarization analysis as well as the GISANS option are designed as potential modules to be implemented separately in the generic instrument layout. The instrument is highly flexible and offers a variety of different measurement modes. With respect to its mechanical components the instrument is exclusively based on current technology. Risks of failure for the chosen setup are minimum.Comment: Matched to the version submitted to Nuclear Instruments and Methods

    Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface

    Get PDF
    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations.Mary Wood is grateful for funding from the Oppenheimer Trust. The PNR data were collected using the V6 instrument at the Helmholtz-Zentrum Berlin (experiment number MAT-04-2131).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0443

    On the Explanation of the Paramagnetic Meissner Effect in Superconductor/Ferromagnet Heterostructures

    Full text link
    An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40nm)/F [F==Fe(1,3nm), Co(3nm), Ni(3nm)] was observed using SQUID magnetometry upon cooling below the superconducting transition temperature Tc in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below Tc consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer

    Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    Get PDF
    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations.Mary Wood is grateful for funding from the Oppenheimer Trust. The PNR data were collected using the V6 instrument at the Helmholtz-Zentrum Berlin (experiment number MAT-04-2131).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0443

    Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring.

    Get PDF
    We aimed to test for feasibility of volume-rendered optical coherence tomography angiography (OCTA) as a novel method for assessing/quantifying retinal vasculature during ocular procedures and to explore the potential for intraoperative use. Thirty patients undergoing periocular anaesthesia were enrolled, since published evidence suggests a reduction in ocular blood flow. Retinal perfusion was monitored based on planar OCTA image-derived data provided by a standard quantification algorithm and postprocessed/volume-rendered OCTA data using a custom software script. Overall, imaging procedures were successful, yet imaging artifacts occurred frequently. In interventional eyes, perfusion parameters decreased during anaesthesia. Planar image-derived and volume rendering-derived parameters were correlated. No correlation was found between perfusion parameters and a motion artifact score developed for this study, yet all perfusion parameters correlated with signal strength as displayed by the device. Concluding, volume-rendered OCTA allows for noninvasive three-dimensional retinal vasculature assessment/quantification in challenging surgical settings and appears generally feasible for intraoperative use

    A widespread class of reverse transcriptase-related cellular genes

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011):20311-20316, doi:10.1073/pnas.1100266108.Reverse transcriptases (RTs) polymerize DNA on RNA templates. They fall into several structurally related but distinct classes, and form an assemblage of RT-like enzymes which, in addition to RTs, also includes certain viral RNA-dependent RNA polymerases (RdRP) polymerizing RNA on RNA templates. It is generally believed that most RT-like enzymes originate from retrotransposons or viruses and have no specific function in the host cell, with telomerases being the only notable exception. Here we report on the discovery and properties of a novel class of RT-related cellular genes collectively named rvt. We present evidence that rvt are not components of retrotransposons or viruses, but single-copy genes with a characteristic domain structure, may contain introns in evolutionarily conserved positions, occur in syntenic regions, and evolve under purifying selection. These genes can be found in all major taxonomic groups including protists, fungi, animals, plants, and even bacteria, although they exhibit patchy phylogenetic distribution in each kingdom. We also show that the RVT protein purified from one of its natural hosts, Neurospora crassa, exists in a multimeric form and has the ability to polymerize NTPs as well as dNTPs in vitro, with a strong preference for NTPs, using Mn2+ as a cofactor. The existence of a previously unknown class of single-copy RT-related genes calls for re-evaluation of the current views on evolution and functional roles of RNA-dependent polymerases in living cells.This work was supported by NSF grant MCB-0821956 to I.A
    corecore