2,066 research outputs found

    Evaluation of g seat augmentation of fixed-base/moving base simulation for transport landings under two visually imposed runway width conditions

    Get PDF
    Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself

    Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes

    Get PDF
    We use cosmological N-body/gasdynamical simulations that include star formation and feedback to examine the proposal that scaling laws between the total luminosity, rotation speed, and angular momentum of disk galaxies reflect analogous correlations between the structural parameters of their surrounding dark matter halos. The numerical experiments follow the formation of galaxy-sized halos in two Cold Dark Matter dominated universes: the standard Omega=1 CDM scenario and the currently popular LCDM model. We find that the slope and scatter of the I-band Tully-Fisher relation are well reproduced in the simulations, although not, as proposed in recent work, as a result of the cosmological equivalence between halo mass and circular velocity: large systematic variations in the fraction of baryons that collapse to form galaxies and in the ratio between halo and disk circular velocities are observed in our numerical experiments. The Tully-Fisher slope and scatter are recovered in this model as a direct result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. We conclude that models that neglect the self-gravity of the disk and its influence on the detailed structure of the halo cannot be used to derive meaningful estimates of the scatter or slope of the Tully-Fisher relation. Our models fail, however, to match the zero-point of the Tully-Fisher relation, as well as that of the relation linking disk rotation speed and angular momentum. These failures can be traced, respectively, to the excessive central concentration of dark halos formed in the Cold Dark Matter cosmogonies we explore and to the formation of galaxy disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa

    Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    Get PDF
    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data

    Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation

    Get PDF
    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data

    Satellites of Simulated Galaxies: survival, merging, and their relation to the dark and stellar halos

    Full text link
    We study the population of satellite galaxies formed in a suite of N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find little spatial or kinematic bias between the dark matter and the satellite population. The velocity dispersion of the satellites is a good indicator of the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the rotation speed of their disk components. The detailed kinematics of simulated satellites and dark matter are also in good agreement. By contrast, the stellar halo of the simulated galaxies is kinematically and spatially distinct from the population of surviving satellites. This is because the survival of a satellite depends on mass and on time of accretion; surviving satellites are biased toward low-mass systems that have been recently accreted by the galaxy. Our results support recent proposals for the origin of the systematic differences between stars in the Galactic halo and in Galactic satellites: the elusive ``building blocks'' of the Milky Way stellar halo were on average more massive, and were accreted (and disrupted) earlier than the population of dwarfs that has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Cosmic M\'enage \`a Trois: The Origin of Satellite Galaxies On Extreme Orbits

    Full text link
    We examine the orbits of satellite galaxies identified in a suite of N-body/gasdynamical simulations of the formation of LL_* galaxies in a LCDM universe. Most satellites follow conventional orbits; after turning around, they accrete into their host halo and settle on orbits whose apocentric radii are steadily eroded by dynamical friction. However, a number of outliers are also present, we find that ~1/3 of satellites identified at z=0z=0 are on unorthodox orbits, with apocenters that exceed their turnaround radii. This population of satellites on extreme orbits consists typically of the faint member of a satellite pair that has been ejected onto a highly-energetic orbit during its first approach to the primary. Since the concurrent accretion of multiple satellite systems is a defining feature of hierarchical models of galaxy formation, we speculate that this three-body ejection mechanism may be the origin of (i) some of the newly discovered high-speed satellites around M31 (such as Andromeda XIV); (ii) some of the distant fast-receding Local Group members, such as Leo I; and (iii) the oddly isolated dwarf spheroidals Cetus and Tucana in the outskirts of the Local Group. Our results suggest that care must be exercised when using the orbits of the most weakly bound satellites to place constraints on the total mass of the Local Group.Comment: 10 pages, 6 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Effect of image tilt of a virtual image display on simulated transport touchdown performance

    Get PDF
    An evaluation of the visual effect of image tilt of a refractive lens display system is presented. The system was used to present a rudimentary computer generated out the window scene to the pilot of a flight simulator during approach, flare, and touchdown. Comparisons are made of sink rate at touchdown and performances for untilted and tilted displays. Sixty four landings with each condition for a total of 128 touchdowns were made by 3 subjects. Performance measures, such as the flare and touchdown footprints, were recorded and analyzed. The visual effect of the image tilt was investigated for a terrain model board scene

    Counterrotating Stars in Simulated Galaxy Disks

    Get PDF
    Counterrotating stars in disk galaxies are a puzzling dynamical feature whose origin has been ascribed to either satellite accretion events or to disk instabilities triggered by deviations from axisymmetry. We use a cosmological simulation of the formation of a disk galaxy to show that counterrotating stellar disk components may arise naturally in hierarchically-clustering scenarios even in the absence of merging. The simulated disk galaxy consists of two coplanar, overlapping stellar components with opposite spins: an inner counterrotating bar-like structure made up mostly of old stars surrounded by an extended, rotationally-supported disk of younger stars. The opposite-spin components originate from material accreted from two distinct filamentary structures which at turn around, when their net spin is acquired, intersect delineating a "V"-like structure. Each filament torques the other in opposite directions; the filament that first drains into the galaxy forms the inner counterrotating bar, while material accreted from the other filament forms the outer disk. Mergers do not play a substantial role and most stars in the galaxy are formed in situ; only 9% of all stars are contributed by accretion events. The formation scenario we describe here implies a significant age difference between the co- and counterrotating components, which may be used to discriminate between competing scenarios for the origin of counterrotating stars in disk galaxies.Comment: 7 pages, 7 figures. Accepted for publication in MNRA

    Modelos de predicción de daños en fruta y sistemática para la evaluación de equipos hortofrutícolas

    Full text link
    Se han desarrollado en laboratorio distintos modelos de predicción de daños, para las especies y variedades más exportadas, con el fin de determinar la pontencial aceptabilidad o rechazo de daños de acuerdo con la normativa comunitaria. Se han desarrollado modelos de predicción para cargas quasi-estáticas (compresiones) y dinámicas (impactos) que abarcan completamente el período de maduración comercial de los frutos. Se ha efectuado un proceso de simulación que integra la información obtenida en laboratorio a través de los modelos de predicción de daños con la correspondiente a la calibración de distintos frutos electrónicos (IS-100 y DEA- 1, para cargas de impacto y compresión respectivamente). Se ha diseñado una metodología de evaluación que recoge tanto las propiedades mecánicas de los frutos en sus dintintos estados de madurez como los registros correspondientes a los frutos electrónicos. La sistemática de evaluación permite determinar el estado actual tanto de la maquinaria como de los procesos de manipulación de fruta

    Neural bruise prediction models for fruit handling and machinery evaluation

    Get PDF
    Neural bruise prediction models based on the degree of fruit damage of the most traded fruit species and varieties were developed for prediction of the fruits to be accepted or rejected. The prediction relied on European Community standards. Different models for both quasi-static (compression) and dynamic (impact) loads covering the full commercial ripening period of fruits were developed. A simulation process was developed for gathering the information on laboratory bruise models and load sensor calibrations for different electronic devices (IS-100 and DEA-1, for impact and compression loads, respectively). An evaluation method was also designed for acquiring and gathering the information on the mechanical properties of fruits and the loading records of the electronic devices. The evaluation system allowed for determination of the current stage of fruit handling processes and machiner
    corecore