4,070 research outputs found

    Solar comparison spectra, 1.0-2.5 mu, from altitudes 1.5-12.5 km

    Get PDF
    Solar and telluric infrared spectra from altitudes between 1.5 and 12.5 k

    Development of a VOR/DME model for an advanced concepts simulator

    Get PDF
    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher

    The relationship between corpus callosum size and forebrain volume

    No full text
    Using high-resolution in vivo magnetic resonance morphometry we measured forebrain volume (FBV), midsagittal size of the corpus callosum (CC) and four CC subareas in 120 young and healthy adults (49 women, 71 men). We found moderate linear and quadratic correlations, indicating that the CC and all CC subareas increase with FBV both in men and women (multiple r2 ranging from 0.10 to 0.28). Allometric equations revealed that these increases were less than proportional to FBV (r2 ranging from 0.02 to 0.30). Absolute CC measurements, as well as CC subareas relative to total CC or FBV (the latter measures termed the CC ratios), were further analyzed with regard to possible effects of handedness, gender, or handedness by gender interaction. Contrary to previous reports, left-handers did not show larger CC measurements compared to right-handers. The only apparent influence of gender was on the CC ratios, which were larger in women. However, smaller brains had larger CC ratios which were mainly independent of gender, a result of the less than proportional increase of callosal size with FBV. We suggest that the previously described gender differences in CC anatomy may be better explained by an underlying effect of brain size, with larger brains having relatively smaller callosa. This lends empirical support to the hypothesis that brain size may be an important factor influencing interhemispheric connectivity and lateralizatio

    Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?

    Get PDF
    We present a smoothed particle hydrodynamic (SPH) simulation that reproduces a galaxy that is a moderate facsimile of those observed. The primary failing point of previous simulations of disk formation, namely excessive transport of angular momentum from gas to dark matter, is ameliorated by the inclusion of a supernova feedback algorithm that allows energy to persist in the model ISM for a period corresponding to the lifetime of stellar associations. The inclusion of feedback leads to a disk at a redshift z=0.52z=0.52, with a specific angular momentum content within 10% of the value required to fit observations. An exponential fit to the disk baryon surface density gives a scale length within 17% of the theoretical value. Runs without feedback, with or without star formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.

    Get PDF
    We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition

    Satellites of Simulated Galaxies: survival, merging, and their relation to the dark and stellar halos

    Full text link
    We study the population of satellite galaxies formed in a suite of N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find little spatial or kinematic bias between the dark matter and the satellite population. The velocity dispersion of the satellites is a good indicator of the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the rotation speed of their disk components. The detailed kinematics of simulated satellites and dark matter are also in good agreement. By contrast, the stellar halo of the simulated galaxies is kinematically and spatially distinct from the population of surviving satellites. This is because the survival of a satellite depends on mass and on time of accretion; surviving satellites are biased toward low-mass systems that have been recently accreted by the galaxy. Our results support recent proposals for the origin of the systematic differences between stars in the Galactic halo and in Galactic satellites: the elusive ``building blocks'' of the Milky Way stellar halo were on average more massive, and were accreted (and disrupted) earlier than the population of dwarfs that has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    A real-time digital computer program for the simulation of a single rotor helicopter

    Get PDF
    A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case

    Cosmic M\'enage \`a Trois: The Origin of Satellite Galaxies On Extreme Orbits

    Full text link
    We examine the orbits of satellite galaxies identified in a suite of N-body/gasdynamical simulations of the formation of LL_* galaxies in a LCDM universe. Most satellites follow conventional orbits; after turning around, they accrete into their host halo and settle on orbits whose apocentric radii are steadily eroded by dynamical friction. However, a number of outliers are also present, we find that ~1/3 of satellites identified at z=0z=0 are on unorthodox orbits, with apocenters that exceed their turnaround radii. This population of satellites on extreme orbits consists typically of the faint member of a satellite pair that has been ejected onto a highly-energetic orbit during its first approach to the primary. Since the concurrent accretion of multiple satellite systems is a defining feature of hierarchical models of galaxy formation, we speculate that this three-body ejection mechanism may be the origin of (i) some of the newly discovered high-speed satellites around M31 (such as Andromeda XIV); (ii) some of the distant fast-receding Local Group members, such as Leo I; and (iii) the oddly isolated dwarf spheroidals Cetus and Tucana in the outskirts of the Local Group. Our results suggest that care must be exercised when using the orbits of the most weakly bound satellites to place constraints on the total mass of the Local Group.Comment: 10 pages, 6 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    A Unified Scaling Law in Spiral Galaxies

    Get PDF
    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensionallogarithmic space of luminosity L, radius R and rotation velocity V. The plane is expressed as L(VR)αL \propto (V R)^{\alpha} in I-passband, where α\alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations, L-V (Tully-Fisher relation), V-R (also the Tully-Fisher relation) and R-L (Freeman's law), can be understood as oblique projections of the surfboard-like plane into 2-D spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/SPH method, including cooling, star formation and stellar feedback. Initial conditions are set to isolated 14 spheres with two free parameters, such as mass and angular momentum. The CDM (h=0.5, Ω0=1\Omega_0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (a) The slope of the plane is well reproduced but the zero-point is not. This zero-point discrepancy could be solved in a low density ($\Omega_00.5) cosmology. (b) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.Comment: Accepted for publication in ApJ Letters. 6 pages including 2 figure
    corecore