3,310 research outputs found
Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade
BACKGROUND:Trade in ornamental fishes represents, by far, the largest route for the importation of exotic vertebrates. There is growing pressure to regulate this trade with the goal of ensuring that species are sustainably harvested and that their point of origin is accurately reported. One important element of such regulation involves easy access to specimen identifications, a task that is currently difficult for all but specialists because of the large number of species involved. The present study represents an important first step in making identifications more accessible by assembling a DNA barcode reference sequence library for nearly half of the ornamental fish species imported into North America. METHODOLOGY/PRINCIPAL FINDINGS:Analysis of the cytochrome c oxidase subunit I (COI) gene from 391 species from 8 coral reef locations revealed that 98% of these species exhibit distinct barcode clusters, allowing their unambiguous identification. Most species showed little intra-specific variation (adjusted mean = 0.21%), but nine species included two or three lineages showing much more divergence (2.19-6.52%) and likely represent overlooked species complexes. By contrast, three genera contained a species pair or triad that lacked barcode divergence, cases that may reflect hybridization, young taxa or taxonomic over-splitting. CONCLUSIONS/SIGNIFICANCE:Although incomplete, this barcode library already provides a new species identification tool for the ornamental fish industry, opening a realm of applications linked to collection practices, regulatory control and conservation
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
Biocatalytic quantification of alpha-glucan in marine particulate organic matter
Marine algae drive the marine carbon cycle, converting carbon dioxide into organic material. A major component of this produced biomass is a variety of glycans. Marine alpha-glucans include a range of storage glycans from red and green algae, bacteria, fungi, and animals. Although these compounds are likely to account for a high amount of the carbon stored in the oceans they have not been quantified in marine samples so far. Here we present a method to extract and quantify alpha-glucans (and compare it with the beta-glucan laminarin) in particulate organic matter from algal cultures and environmental samples using sequential physicochemical extraction and enzymes as alpha-glucan-specific probes. This enzymatic assay is more specific and less susceptible to side reactions than chemical hydrolysis. Using HPAEC-PAD to detect the hydrolysis products allows for a glycan quantification in particulate marine samples down to a concentration of approximate to 2 mu g/L. We measured glucans in three cultured microalgae as well as in marine particulate organic matter from the North Sea and western North Atlantic Ocean. While the beta-glucan laminarin from diatoms and brown algae is an essential component of marine carbon turnover, our results further indicate the significant contribution of starch-like alpha-glucans to marine particulate organic matter. Henceforth, the combination of glycan-linkage-specific enzymes and chromatographic hydrolysis product detection can provide a powerful tool in the exploration of marine glycans and their role in the global carbon cycle
Role of infochemical mediated zooplankton grazing in a phytoplankton competition model
Infochemicals released by marine phytoplankton play important roles in food web interactions by influencing the feeding behavior and selectivity of zooplanktonic predators. Recent modeling efforts have focused on the role of such chemicals as toxic grazing deterrents in phytoplankton competition. However, infochemicals may also be utilized as grazing cues, leading predators to profitable foraging patches. Here we investigate the role of infochemical mediated zooplankton grazing in a standard 3-species phytoplankton competition model, with the aim of further elucidating the ecological role of phytoplankton derived infochemicals. We then extend this to consider a more realistic 4-species model. The models produce a range of solutions depending on the strength of competition and microzooplankton grazing selectivity. Our key result is that infochemical chemoattractants, which increase the susceptibility of the producer to grazing, can provide a refuge for both competing phytoplankton species by attracting carnivorous copepods to consume microzooplankton grazers in a multi-trophic interaction. Our results indicate that infochemicals potentially have important consequences for the dynamics of marine food webs. © 2012 Elsevier B.V
Rotated stripe order and its competition with superconductivity in LaSrCuO
We report the observation of a bulk charge modulation in
LaSrCuO (LSCO) with a characteristic in-plane wave-vector
of (0.236, ), with =0.011 r.l.u. The transverse shift of
the ordering wave-vector indicates the presence of rotated charge-stripe
ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond
direction. On cooling through the superconducting transition, we find an abrupt
change in the growth of the charge correlations and a suppression of the charge
order parameter indicating competition between the two orderings. Orthorhombic
LSCO thus helps bridge the apparent disparities between the behavior previously
observed in the tetragonal "214" cuprates and the orthorhombic yttrium and
bismuth-based cuprates and thus lends strong support to the idea that there is
a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue
Non-volatile voltage control of in-plane and out-of-plane magnetization in polycrystalline Ni films on ferroelectric PMN-PT (001)pcsubstrates
We identify room-temperature converse magnetoelectric effects (CMEs) that are non-volatile by using a single-crystal substrate of PMN-PT (001)pc (pc denotes pseudocubic) to impart voltage-driven strain to a polycrystalline film of Ni. An appropriate magnetic-field history enhances the magnetoelectric coefficient to a near-record peak of ∼10-6 s m-1 and permits electrically driven magnetization reversal of substantial net magnetization. In zero magnetic field, electrically driven ferroelectric domain switching produces large changes of in-plane magnetization that are non-volatile. Microscopically, these changes are accompanied by the creation and destruction of magnetic stripe domains, implying the electrical control of perpendicular magnetic anisotropy. Moreover, the stripe direction can be rotated by a magnetic field or an electric field, the latter yielding the first example of electrically driven rotatable magnetic anisotropy. The observed CMEs are associated with repeatable ferroelectric domain switching that yields a memory effect. This memory effect is well known for PMN-PT (110)pc but not PMN-PT (001)pc. Given that close control of the applied field is not required as for PMN-PT (110)pc, this memory effect could lead the way to magnetoelectric memories based on PMN-PT (001)pc membranes that switch at low voltage
Chemical hydrogel sensors based on the bimorph effect with short response time
Hydrogel sensors are well suited to measuring the concentration of substances in liquids, and, because the hydrogel is biocompatible, they are ideal for medical use. Hydrogels change their volume in response to stimuli. The larger the hydrogel, the more pronounced the measurement signal. However, a larger volume also leads to slower swelling due to the longer diffusion paths. One method of determining the degree of swelling is to measure the swelling pressure using a piezoresistive pressure sensor. With current approaches, measurement times of several minutes can be achieved. By exploiting the bimorph effect, we were able to reduce the thickness of the hydrogel and, thus, reduce the response time of the entire sensor to less than 1 min. The aim of this paper is now to show how a sensor with short response times can be designed and manufactured and, in particular, how to find a suitable hydrogel composition, how to appropriately structure the hydrogel layer and how a robust adhesion of the hydrogel to the sensor chip can be achieved. As a result, we were able to show that such hydrogel sensors with response times of just a few seconds are possible.</p
A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models
A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations
Statistical-Thermal Model Calculations using THERMUS
Selected results obtained using THERMUS, a newly-developed
statistical-thermal model analysis package, are presented.Comment: Contributed to 8th International Conference on Strangeness in Quark
Matter, Cape Town, South Africa, 15-20 September 200
Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV
A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments
- …