
Ecological Complexity xxx (2012) xxx–xxx

G Model

ECOCOM-369; No. of Pages 10
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository
Original research article

Role of infochemical mediated zooplankton grazing in a phytoplankton
competition model

Nicola D. Lewis a,b,*, Mark N. Breckels b, Michael Steinke b, Edward A. Codling a,b

a Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
b School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

A R T I C L E I N F O

Article history:

Received 25 June 2012

Received in revised form 18 October 2012

Accepted 22 October 2012

Available online xxx

Keywords:

Infochemicals

Competition

Predation

Dimethylsulfide (DMS)

Food web interactions

Population dynamics

A B S T R A C T

Infochemicals released by marine phytoplankton play important roles in food web interactions by

influencing the feeding behavior and selectivity of zooplanktonic predators. Recent modeling efforts

have focused on the role of such chemicals as toxic grazing deterrents in phytoplankton competition.

However, infochemicals may also be utilized as grazing cues, leading predators to profitable foraging

patches. Here we investigate the role of infochemical mediated zooplankton grazing in a standard 3-

species phytoplankton competition model, with the aim of further elucidating the ecological role of

phytoplankton derived infochemicals. We then extend this to consider a more realistic 4-species model.

The models produce a range of solutions depending on the strength of competition and

microzooplankton grazing selectivity. Our key result is that infochemical chemoattractants, which

increase the susceptibility of the producer to grazing, can provide a refuge for both competing

phytoplankton species by attracting carnivorous copepods to consume microzooplankton grazers in a

multi-trophic interaction. Our results indicate that infochemicals potentially have important

consequences for the dynamics of marine food webs.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Information-conveying chemicals (infochemicals) including
kairomones, allelochemicals or pheromones play a crucial role
in food web interactions. Such chemicals can be exploited by an
individual in order to find prey or mates, or to avoid predators.
Consequently, chemically mediated interactions can have a strong
effect on community structure and population dynamics within an
ecosystem (Hay, 2009).

In the marine environment chemicals released into the
surroundings by small unicellular phytoplankton can have a range
of consequences for their susceptibility to predation and competi-
tive interactions. For example some infochemicals are known to
affect the foraging behavior and selectivity of their zooplanktonic
predators (Vos et al., 2006). These chemicals may take the form of
toxins (e.g. Turner and Tester, 1997) or deterrents (e.g. Wolfe,
2000) which act as a defense mechanism to reduce grazing
pressure. Equally, cellular exudates may enhance the ability of a
zooplankter to locate its prey (Breckels et al., 2011; Strickler,
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1982). Additionally, multi-trophic interactions may occur, where
the grazing-induced release of chemicals into the surrounding
environment attracts carnivorous predators, thereby reducing
grazing pressure on the primary producer (Steinke et al., 2002).
Such tri-trophic interactions are well described in terrestrial
environments (e.g. Dicke, 1999) and were first identified in a
marine benthic system by Coleman et al. (2007). However, the
occurrence of infochemically mediated multi-trophic interactions
in the plankton remains unresolved.

In the nutrient-dilute marine environment, where competition
for resources is fierce, phytoplankton deterrents may reduce
grazing pressure on the producing species. They therefore have the
potential to make zooplankton select alternative prey and,
consequently, increase grazing on competing phytoplankton
species. Models investigating the effects of toxic phytoplankton
on the outcome of grazing interactions in a mixed prey assemblage
have recently received heightened research attention (e.g. Bairagi
et al., 2008; Banerjee and Venturino, 2011; Pal et al., 2009; Roy
et al., 2006; Roy and Chattopadhyay, 2006), whereas the role of
grazer attraction to phytoplankton exudates has received little
attention.

Numerous infochemicals exist in the marine environment.
We used the secondary algal metabolite dimethylsulfonio
propionate (DMSP) and its breakdown product dimethyl sulfide
(DMS) as example infochemicals to explore potential planktonic
al mediated zooplankton grazing in a phytoplankton competition
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Fig. 1. The interactions between infochemical producing phytoplankton (P1), non-

infochemical producing phytoplankton (P2), microzooplankton (M) and copepods

for the model given by Eqs. (1)–(3). The solid arrows show the flow of energy

through predation, phytoplankton uptake of nutrients and losses from the system.

The dashed arrows show phytoplankton competition. Ri are the phytoplankton

growth terms while Gi are the microzooplankton grazing terms. Parameter

definitions are given in Table 1.
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interactions across three trophic levels, since a wide body of
evidence suggests that these chemicals play an important role in
foraging behavior and predator–prey interactions (Breckels et al.,
2011; Seymour et al., 2010; Strom et al., 2003a,b; Wolfe et al.,
1997). Microzooplankton are major grazers of phytoplankton
(Calbet and Landry, 2004; Sherr and Sherr, 1988), however, the
influence of DMS and related compounds on microzooplankton
grazing remains contentious; some experimental evidence
suggests that these chemicals cause grazing inhibition (e.g. Strom
et al., 2003a,b; Wolfe et al., 1997) and other more recent studies
suggest they act as chemoattractants (e.g. Breckels et al., 2011;
Seymour et al., 2010). The production of DMS is rapidly
accelerated following microzooplankton grazing on phytoplank-
ton (Archer et al., 2001a; Wolfe and Steinke, 1996). DMS has been
shown to elicit behavioral changes in a wide range of marine
organisms including planktonic copepods (Steinke et al., 2006).
The ability of copepods to react to DMS suggests that, in principle,
the grazing-induced release of DMS can promote multi-trophic
interactions between phytoplankton, microzooplankton and
copepods by providing an infochemical cue for foraging copepods.
This may then enhance predation on microzooplankton and
thereby release grazing pressure on phytoplankton (Steinke et al.,
2002).

We recently explored a model of the interactions between
infochemical producing phytoplankton, microzooplankton and
copepods under the influence of a DMS infochemical cue produced
following microzooplankton grazing (Lewis et al., 2012). Firstly, we
found that the inclusion of a grazing-induced infochemical term,
that acted to attract predatory copepods, could stabilize the
population dynamics. Secondly, we found that the inclusion of
such a term could promote the formation of phytoplankton
blooms. Irigoien et al. (2005) proposed that bloom propagation
occurs due to a loophole in the microzooplankton grazing impact,
thus supporting the notion that infochemicals have important
consequences for the dynamics of marine systems. Here we build
on the work of Lewis et al. (2012) by including a competing non-
infochemical producing phytoplankton species. First, we consider
a standard two-competitor, one predator model adapted to
represent the interactions between infochemical and non-info-
chemical producing phytoplankton, microzooplankton and cope-
pods (Fig. 1). We then extend this to consider a more realistic 4-
species model and show that the same qualitative results are
obtained. The case where infochemicals act as deterrents or toxins
has been well studied elsewhere (e.g. Roy et al., 2006) and hence
we focus our efforts on the case where infochemical exudates
enhance microzooplankton foraging, with the aim of further
elucidating the ecological function of chemoattractants in the
plankton.

2. The model

We consider a system where microzooplankton (M) graze on
two distinct competing populations of phytoplankton: P1 are
infochemical producing phytoplankton, for example dinoflagel-
lates or coccolithophores which produce increased levels of DMS
during microzooplankton grazing (Archer et al., 2003; Wolfe and
Steinke, 1996), and P2 are ‘non-infochemical’ producing phyto-
plankton. Phytoplankton are grazed by microzooplankton, which
are then in turn consumed by copepods. Although copepods can
feed on small phytoplankton, studies on the grazing rates of
Calanus helgolandicus and C. finmarchicus have shown that the
small DMS-producing coccolithophore Emiliania huxleyi is a
suboptimal food source (Nejstgaard et al., 1995). Microzooplank-
ton grazers may play an important role in the energy flow and
‘trophic upgrading’ by enhancing the biochemical content of
phytoplankton (Klein Breteler et al., 1999; Tang and Taal, 2005).
Please cite this article in press as: Lewis, N.D., et al., Role of infochemic
model. Ecol. Complex. (2012), http://dx.doi.org/10.1016/j.ecocom.20
One of the key assumptions in the following model is that
microzooplankton provide the only trophic link between phyto-
plankton and copepods.

A simple representation of the above system can be provided by a
two-competitor, one predator model, such as that employed by
Kretzschmar et al. (1993). The authors of this paper investigated the
effects of adding an inedible algal species to a system consisting of an
edible algal species with a zooplankton grazer. The model detailed
below is topologically equivalent to that of Kretzschmar et al. (1993).
However, their assumption that one of the phytoplankton species is
inedible means that their numerical simulations were carried out on
a simplified model, as described below.

Both phytoplankton species grow logistically where r1 and r2

are the intrinsic rates of growth and K1 and K2 are the carrying
capacities of infochemical producing and non-infochemical
producing phytoplankton, respectively. Phytoplankton growth is
assumed to be limited by nutrients and light availability.
Phytoplankton growth is also limited by an interspecific competi-
tion term, where a12 is the competitive effect of non-infochemical
producers on infochemical producers and vice versa (Fig. 1). The a
terms are assumed to represent growth limiting factors such as
nutrient depletion and/or shading by the other species (Solé et al.,
2006), but may also account for competitive advantages due to
differences in size and physiology.
al mediated zooplankton grazing in a phytoplankton competition
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The Holling type II functional response used by Kretzschmar
et al. (1993) to model microzooplankton grazing is presented here
in Michaelis–Menten form, which is typically used to represent
microzooplankton feeding (Davidson et al., 2011; Roberts et al.,
2011). The maximum grazing rates of microzooplankton on
infochemical and non-infochemical producing phytoplankton
are g1 and g2 respectively while k is the half saturation constant.
One of the consequences of assuming inedible phytoplankton, i, is
that gi = 0. All terms multiplied by the grazing rate on inedible
algae in the Kretzschmar et al. (1993) model cancel upon applying
this assumption, meaning that their numerical simulations were
carried out on a reduced model. Here, both infochemical and non-
infochemical producing phytoplankton are edible, although
subject to differing grazing rates through microzooplankton
selectivity, and hence g1, g2 > 0. We further impose the constraint
that g1 + g2 = gmax where gmax is some constant maximum
microzooplankton grazing rate. This constraint means that an
increase in the grazing rate on one phytoplankton species, based on
phytoplankton infochemical characteristics, will correspond to a
decrease of grazing on the other. Hence when g1 = g2 micro-
zooplankton show no grazing selectivity but when g1 > g2

infochemicals act as grazing attractors, resulting in increased
microzooplankton grazing on infochemical producing phytoplank-
ton. It should be noted that the saturation of the grazing response is
dependent on the abundances of both phytoplankton species.
Therefore, total microzooplankton grazing selectivity is based both
on the attractiveness, dependent on infochemical characteristics,
and abundance of each phytoplankton species.

A key point to note is that although copepods are not explicitly
modeled here, the effect of copepod predation is accounted for in
the microzooplankton mortality terms in Eq. (3). Contrary to
studies on toxic phytoplankton (e.g. Roy et al., 2006), DMS has no
toxic effects on microzooplankton grazers (Strom et al., 2003a,b)
and therefore grazing infochemical producing phytoplankton has
no direct harmful effect for microzooplankton. However, micro-
zooplankton mortality is indirectly increased by a factor l
proportional to grazing on infochemical producing phytoplankton.
Such a term has typically been used to represent the inhibitory
effects of toxic phytoplankton in similar models (e.g. Banerjee and
Venturino, 2011; Pal et al., 2009; Roy et al., 2006; Roy and
Chattopadhyay, 2006). However, here this mortality is assumed to
be from an instantaneous increase in predation by copepods
attracted by elevated levels of infochemicals in the system, where
the parameter l is a non-dimensional quantity relating the
microzooplankton grazing rate to the infochemical-mediated
microzooplankton mortality rate (Lewis et al., 2012; Steinke
et al., 2006). The mortality term m represents any mortality
incurred by microzooplankton in the absence of infochemicals;
Table 1
The variables and parameters used in the model given by Eqs. (1)–(3). The parameter 

Variable/parameter Definition 

P1 Infochemical producing phytoplankton 

P2 Non-infochemical producing phytoplankton 

M Microzooplankton 

r1 Intrinsic growth rate of P1

r2 Intrinsic growth rate of P2

Ki, i = 1, 2 Phytoplankton carrying capacity 

a12 Competitive effect of P2 on P1

a21 Competitive effect of P1 on P2

g1 Microzooplankton grazing rate on P1

g2 Microzooplankton grazing rate on P2

gmax Maximum grazing rate 

k Half saturation constant 

gi, i = 1, 2 Microzooplankton grazing efficiency 

m Microzooplankton mortality (no infochemicals

l Additional microzooplankton mortality 

Please cite this article in press as: Lewis, N.D., et al., Role of infochemic
model. Ecol. Complex. (2012), http://dx.doi.org/10.1016/j.ecocom.20
this microzooplankton mortality is mainly assumed to be from
predation by copepods (mediated through mechanisms other than
chemoreception), however, this term also includes a background
mortality through processes such as sinking and predation from
higher trophic levels.

The model is given by:

dP1

dt
¼ r1P1 1 � P1 þ a12P2

K1

� �
� g1P1M

k þ P1 þ P2
(1)

dP2

dt
¼ r2P2 1 � P2 þ a21P1

K2

� �
� g2P2M

k þ P1 þ P2
(2)

dM

dt
¼ ðg1 � lÞg1P1M þ g2g2P2M

k þ P1 þ P2
� mM (3)

where P1 � 0, P2 � 0, M � 0 and all model parameters are
nonnegative and constant in time. Table 1 summarizes the
variables and parameters in this model while Fig. 1 shows the
interactions between the plankton species.

3. Mathematical results

The dynamics of the one- and two-dimensional subsystems of
Eqs. (1)–(3) are well known (Kretzschmar et al., 1993). If Pi 6¼ 0 and
Pj, M � 0 then Pi, in the absence of competition or predation, will
grow to the environmental carrying capacity. For M � 0 and P1,
P2 6¼ 0 the model reduces to the standard Lotka–Volterra competi-
tion model (Murray, 2002; Waltman, 1983), where stability is only
possible if the competition between the two phytoplankton
species is weak (a12, a21 < 1). If Pj � 0 and Pi, M 6¼ 0 the model
reduces to the standard Rosenzweig–MacArthur predator–prey
equations (Rosenzweig and MacArthur, 1963) where the system
can be destabilized by the phytoplankton carrying capacity.

A stability analysis of the full model given by Eqs. (1)–(3) has
been carried out by Kretzschmar et al. (1993). The model possesses
seven different equilibrium points of the form Ei ¼ ðP�1; P�2; M�Þ.
These equilibria, along with their stability conditions, are
summarized in Table 2. The reader is referred to Kretzschmar
et al. (1993) for full mathematical details.

4. Numerical results

MATLAB 7.8 (MathWorks Inc., 2009) is used to numerically
investigate the qualitative effect of infochemical-mediated micro-
zooplankton grazing on the population dynamics of the system.
We go beyond previous studies, which have solely focused on the
specific cases where infochemical producing phytoplankton are
values given here are fixed unless otherwise stated.

Value Reference

– –

– –

– –

0.47 d�1 Wolfe and Steinke (1996)

0.7 d�1 Wolfe and Steinke (1996)

120 mgC l�1 Morozov et al. (2011)

0.8 ; 1.2 –

0.8 ; 1.2 –

3 mgC l�1 d�1 –

3 mgC l�1 d�1 –

6 mgC l�1 d�1 Morozov et al. (2011)

20 mgC l�1 Morozov et al. (2011)

0.25 Edwards and Brindley (1999)

) 0.3d�1 Lewis et al. (2012)

0.1 Lewis et al. (2012)

al mediated zooplankton grazing in a phytoplankton competition
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Table 2
Equilibrium points of the system given by Eqs. (1)–(3) and their stability conditions. *Note that the condition Kg1(g1� l) > m(K1 + k) must be satisfied for E4 to exist in the

positive octant. An analogous condition exists for the existence of E5 in the positive octant.

Equilibrium P�1; P�2; M� Stability conditions

E0 0, 0, 0 Unstable

E1 K1, 0, 0 1 < a21
K1
K2

ðg1 � lÞg1K1

k þ K1
< m

E2 0, K2, 0 1 < a12
K2
K1

g2g2K2

k þ K2
< m

E3
K1 � a12K2

1 � a12a21
;
K2 � a21K1

1 � a12a21
; 0 a12, a21< 1

ðg1 � lÞg1P�1 þ g2g2P�2
k þ P�1 þ P�2

< m

E4*
mk

g1ðg1 � lÞ � m
; 0;

r1kðg1 � lÞðK1ðg1ðg1 � lÞ � mÞ � mkÞ
K1ðg1ðg1 � lÞ � mÞ2

r2 1 � a21P�
1

K2

� �
� g2M�

kþP�
1
< 0

K1g1M�

ðk þ P�1Þ
2
< r1

E5* 0;
mk

g2g2 � m
;
r2kg2ðK2ðg2g2 � mÞ � mkÞ

K2ðg2g2 � mÞ2
r1 1 � a12P�

2
K1

� �
� g1M�

kþP�
2
< 0

K2g2M�

ðk þ P�2Þ
2
< r2

E6 P1, P2, M 6¼ 0 –
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avoided or not grazed at all, to consider infochemicals as
attractants, which cause the producer to be grazed more heavily
than its competitor. When microzooplankton grazers are not
present Eqs. (1)–(3) reduce to the standard Lotka–Volterra
competition model (Murray, 2002; Waltman, 1983). The Lotka–
Volterra competition model is well known to exhibit four
qualitatively different behaviors depending on the strength of
the competitive effect of each of the phytoplankton species on the
other i.e. weak competition a12, a21 < 1, strong competition a12,
a21 > 1, infochemical producing phytoplankton as the superior
competitors a12 < 1, a21 > 1 and non-infochemical producing
phytoplankton as the superior competitors a12 > 1, a21 < 1 (see
Murray, 2002). In the following analysis the competition between
the two phytoplankton species is parameterized for each of the
four competition situations and the effect of adding (i) a
microzooplankter which shows no grazing selectivity (g1 = g2)
and (ii) a microzooplankter which exhibits grazing selectivity in
response to infochemical cues is investigated. The case where
infochemicals act as deterrents or toxins has been well studied
elsewhere (e.g. Roy et al., 2006) and hence these results have been
omitted. Here we focus on the case where infochemicals act as
grazing attractors (g1 > g2), as observed in the experiments of
Seymour et al. (2010) and Breckels et al. (2011).

Table 1 gives the parameter values used in the numerical
analysis, which are fixed unless otherwise stated. These values
were taken from parameter ranges found in the literature to give
biologically reasonable results. It should be noted that in the
following analysis the infochemical producing phytoplankton have
been parameterized with a lower intrinsic growth rate than the
non-infochemical producing phytoplankton. This is based on
the experiments of Wolfe and Steinke (1996) who compared the
growth and DMS production rates of two different strains of the
phytoplankton species Emiliania huxleyi and found the high DMS
producing strain to achieve lower growth rates. Here we assume
that the lower growth rate corresponds to a cost of producing
infochemicals.

4.1. Microzooplankton show no response to infochemicals

The presence of generalist microzooplankton grazers that show
no grazing selectivity for either phytoplankton species results in
Please cite this article in press as: Lewis, N.D., et al., Role of infochemic
model. Ecol. Complex. (2012), http://dx.doi.org/10.1016/j.ecocom.20
the extinction of infochemical producing phytoplankton. This is a
consequence of reduced growth rates as a cost of infochemical
production.

For all cases where microzooplankton show no grazing
selectivity (g1/gmax = 0.5) solutions tend to a stable limit cycle
around the saddle-focus E5 on the P2 � M plane (Fig. 2a). In this
situation the infochemical producing phytoplankton become
extinct from the system in less than 50 days, leaving the non-
infochemical producing phytoplankton and microzooplankton to
exhibit predator–prey oscillations over time (Fig. 2b), such that
there is a recurring bloom of non-infochemical producing
phytoplankton.

4.2. Microzooplankton use chemoattractors

To model microzooplankton grazing selectivity, bifurcation
analyses were carried out in Matcont (Dhooge et al., 2003) for each
of the competition situations. All parameters were fixed at the
values given in Table 1 except for the microzooplankton grazing
rates, g1 and g2 (where g2 = gmax � g1), which were allowed to vary
from 0 to gmax to model microzooplankton deterrence (g1 < gmax/2;
results analogous to Roy et al. (2006)) and attraction (g1 > gmax/2)
in response to infochemical cues. For simplicity, in the following
analysis the rescaled parameter g (where 0 � g = g1/gmax � 1) is
used to represent microzooplankton grazing selectivity for
infochemical producing phytoplankton. Selected results of this
analysis are summarized in the bifurcation diagrams given by
Figs. 3–5.

When infochemicals were modeled as grazing attractors the
infochemical producers were driven to extinction in most cases as
a result of increased grazing pressure from microzooplankton
(bifurcation diagrams omitted). However, the key result is that,
despite lower growth rates and increased grazing pressure,
phytoplankton coexistence was possible when both the competi-
tive effect of non-infochemical producers was weak (a12 = 0.8) and
the grazing attractance was strong (g > 0.765; Figs. 3 and 4).

For both cases where non-infochemical producers are weak
competitors (a12 = 0.8), increasing the microzooplankton grazing
selectivity for infochemical producing phytoplankton (from
g = 0.5) results in a supercritical Hopf bifurcation at g = 0.720.
This Hopf bifurcation destroys the stable limit cycle emanating
al mediated zooplankton grazing in a phytoplankton competition
12.10.003
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from E5 and transforms E5 from a saddle-focus to a stable node
(Fig. 5b), so that non-infochemical producing phytoplankton and
microzooplankton populations tend to a stable steady state. A
further transcritical bifurcation at g = 0.765 transforms E5 into a
saddle point and transfers stability to E6 (Fig. 5), which is a stable
focus-node corresponding to the coexistence of all plankton
species (Fig. 6).

4.2.1. Persistence

The method of Freedman and Waltman (1984) was used to test
for persistence when the competitive effect of non-infochemical
producers is weak (a12 = 0.8) and chemoattraction is strong
(g > 0.765), that is when coexistence is possible in the model. The
model given by equations (1)–(3) is of the form of model (3.2) of
Freedman and Waltman (1984), hence the equations are
continuous and bounded in forward time. E0 is always a
hyperbolic saddle point (Table 2). It can also be shown that E1

and E2 are hyperbolic saddle points for the conditions under
consideration. To prove persistence, it is further required that all
boundary equilibria repel trajectories orthogonally to their
coordinate planes. By theorem 3.1 of Freedman and Waltman
(1984), provided no limit cycles exist in the boundary planes, this
gives conditions:

r1 1 � a12P̃2

K2

  !
� g1M̃

k þ P̃2

> 0 (4)

r2 1 � a21P̂1

K1

  !
� g2M̂

k þ P̂1

> 0 (5)

ðg1 � lÞg1P�1 þ g2g2P�2
k þ P�1 þ P�2

� m > 0 (6)

where E3 ¼ ðP�1; P�2; 0Þ, E4 ¼ ðP̂1; 0; M̂Þ and E5 ¼ ð0; P̃2; M̃Þ.
It can be shown that each of the above conditions are satisfied

for the parameter values under consideration. However, the Dulac
al mediated zooplankton grazing in a phytoplankton competition
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Fig. 6. (a) Phase portrait and (b) time series plot for the model given by Eqs. (1)–(3) when competition is weak (a12 = a21 = 0.8) and microzooplankton show high grazing

attraction (g = 0.833). Similar plots are obtained when infochemical producers are parameterized as the superior competitors (a12 = 0.8, a21 = 1.2).
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criterion could not be satisfied for E4. Furthermore, the Jacobian
matrix corresponding to this equilibrium possesses a complex
conjugate pair of eigenvalues with positive real part. This suggests
the existence of a limit cycle in the P1 � M plane. The existence of
this limit cycle does not disprove persistence. However, testing for
persistence becomes more complicated (Freedman and Waltman,
1984) and is beyond the scope of this paper.

The fact that coexistence is possible, and persistence likely,
suggests that infochemical attractants may play a beneficial role
for the producing species under certain conditions. This presents a
counterintuitive result; chemoattractants act to lead microzoo-
plankton to the producing phytoplankton cells, resulting in an
increased mortality from grazing. However, the release of
infochemicals following grazing by microzooplankton attracts
predatory copepods that diminish microzooplankton populations.
This creates a refuge from grazing at the population level for the
infochemical producing phytoplankton, as well as for the non-
infochemical producers. In this situation, the long term benefit of
producing chemicals to attract copepods outweigh the short term
cost of increasing their attractiveness to microzooplankton
grazers.

5. Model evaluation and refinements

The model given by Eqs. (1)–(3) is a simple representation of the
system under investigation, employed to make analytic progress
(e.g. Kretzschmar et al., 1993). In particular, an important feature
of the system is copepod predation on microzooplankton, which is
included only explicitly in the linear microzooplankton mortality
terms given by Eq. (3). Generally, any mortality caused by higher
trophic levels is modeled by a nonlinear term, although the linear
form is commonly used in the absence of evidence to suggest
otherwise (Edwards and Yool, 2000).
Please cite this article in press as: Lewis, N.D., et al., Role of infochemic
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A more realistic representation of the system can be obtained
by adding an equation for the copepod dynamics and modifying
the microzooplankton mortality terms accordingly. Taking this
approach, Eqs. (1) and (2) remain unchanged. Copepods consume
microzooplankton according to a Michaelis–Menten functional
response, parameterized with a lower maximum consumption rate
and higher half saturation density as copepods evolve on slower
time scales than small microzooplankton grazers (Edwards et al.,
2000). This predation rate is increased by a multiplicative factor
1 + (jg1P1M)/(1 + P1 + P2) to represent an increase in copepod
foraging efficiency through the use of grazing-induced infochem-
icals, where the parameter j represents how much an increase in
infochemicals corresponds to an increase in copepod predation
(Lewis et al., 2012). Microzooplankton natural mortality (no
predation from copepods) is represented by the parameter m,
while copepods suffer density dependent mortality at a rate d,
which corresponds to predation from higher trophic levels.

The modified microzooplankton and new copepod equations
are given by:

dM

dt
¼ g1g1P1M þ g2g2P2M

k þ P1 þ P2
� mM � bMZ

kZ þ M
1 þ jg1P1M

k þ P1 þ P2

� �
(7)

dZ

dt
¼ ebMZ

kZ þ M
1 þ jg1P1M

k þ P1 þ P2

� �
� dZ2 (8)

where M � 0, Z � 0 and all model parameters are nonnegative and
constant in time. Table 3 summarizes the additional variables and
parameters in the modified model.

We do not carry out a full equilibrium and stability analysis on
the more complex model Eqs. (1), (2), (7) and (8). Rather, we use
numerical simulations and bifurcation analyses to show that the
al mediated zooplankton grazing in a phytoplankton competition
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Table 3
The variables and parameters used for copepods in the refined model given by Eqs. (7)–(8). The parameter values given here are fixed unless otherwise stated.

Variable/ parameter Definition Value Reference

Z Copepods – –

b Maximum predation rate 1 mgC l�1 d�1 Edwards and Brindley (1999)

j Extra infochemical mediated predation 0.1 mgC l�1 d�1 –

kZ Half saturation constant 30 mgC l�1 Morozov et al. (2011)

e Predation efficiency 0.7 Edwards et al. (2000)

m Microzooplankton natural mortality 0.1 d�1 Edwards and Brindley (1999)

d Copepod mortality 0.15 d�1 Edwards and Brindley (1999)
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infochemical-mediated refuge effect can be reproduced in a more
realistic model, therefore strengthening our original result.

5.1. Numerical simulations

Numerical investigation of the modified model given by
Eqs. (1), (2), (7) and (8), using the parameter values given in
Tables 1 & 3, shows that the qualitatively important features of the
simple model (Eqs. (1)–(3)) remain unchanged. In particular, when
microzooplankton show no grazing selectivity (g = 0.5) solutions
tend to a limit cycle around the unstable equilibrium ð0; P̃2; M̃; Z̃Þ ¼
ð0; 3:812; 5:380; 0:710Þ for all competitive situations. Here, as in
the model given by Eqs. (1)–(3), the infochemical producing
phytoplankton quickly become extinct from the system, leaving
non-infochemical producing phytoplankton, microzooplankton
and copepod densities to oscillate over time (Fig. 7a). However,
when infochemicals are modeled as strong grazing attractors for
microzooplankton (g > 0.913) and the competitive effect of non-
infochemical producing phytoplankton is weak (a12 = 0.8) solu-
tions tend to the asymptotically stable equilibrium ðP�1; P�2; M�; Z�Þ
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Fig. 7. Time series plots for the refined model when competition is weak

(a12 = a21 = 0.8). (a) Microzooplankton show no grazing selectivity (g = 0.5).

Solutions oscillate around the unstable equilibrium (0, 3.812, 5.380, 0.710). (b)

Microzooplankton show high grazing attraction (g = 0.983). Solutions tend to the

asymptotically stable equilibrium (8.675, 112.820, 1.979, 0.309). A similar plot is

obtained when infochemical producers are parameterized as the superior

competitors (a12 = 0.8, a21 = 1.2).
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where P�1; P�2; M�; Z� 6¼ 0 for a large range of initial conditions
(checked using Maple 12), corresponding to the coexistence of all
plankton species (Fig. 7b).

5.2. Bifurcation analysis

Bifurcation analyses performed for both cases where non-
infochemical producing phytoplankton are weak competitors
(a12 = 0.8) produce results analogous to those obtained from the
simple model given by Eqs. (1)–(3). The stable limit cycle around
E5c ¼ ð0; P̃2; M̃; Z̃Þ, that occurs when microzooplankton show no
grazing selectivity, is destroyed by a supercritical Hopf bifurcation
at g = 0.871, stabilizing this equilibrium. A transcritical bifurcation
at g = 0.913 then transfers stability from E5c to E6c ¼ ðP�1; P�2; M�; Z�Þ
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Fig. 8. Bifurcation diagram for (a) P1 and (b) P2 when microzooplankton

chemoattraction is increased and infochemical producers are the superior

competitors (a12 = 0.8, a21 = 1.2). The dot-dashed line shows the magnitude of

the limit cycle when E5 is unstable. H = Hopf; BP = branch point (transcritical

bifurcation). A similar diagram is obtained when competition is weak

(a12 = a21 = 0.8). Note that branches corresponding to permanently unstable

equilibria have been omitted.
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where P�1; P�2; M�; Z� 6¼ 0, that is where all plankton species coexist
(Fig. 8).

These results strengthen the key result from analysis of the
simple model; that the release of chemoattractants may create a
grazing refuge for the producer through the promotion of
multitrophic interactions. The fact that these results can be
reproduced in a more complex and realistic model add to the
robustness of the result.

6. Discussion

Here we use a competition model to investigate the effect of
infochemicals in modifying microzooplankton grazing selectivity.
In addition, we consider the potential of grazing-induced
infochemicals modifying microzooplankton susceptibility to pre-
dation in a multi-trophic scenario.

Addition of a predator to a simple competitive situation has
traditionally been proposed to promote coexistence between
competing prey (Paine, 1966) and prevent one species heading to
extinction as predicted by the principle of competitive exclusion
(Hardin, 1960). In our model (using the parameter values given in
Tables 1 and 3), a grazer showing no grazing selectivity in response
to chemical cues resulted in the extinction of infochemical
producing phytoplankton as a result of reduced growth rates,
with the remaining plankton species exhibiting oscillations in
population density. Previous studies of two-competitor one
predator models have shown that such a system can be stabilized
if one of the prey species is inedible (Kretzschmar et al., 1993) or
toxic (Roy et al., 2006; Roy and Chattopadhyay, 2006). Here, a
similar result is obtained when microzooplankton, subject to
higher trophic predation, preferentially graze phytoplankton in
response to infochemical cues and coexistence of all plankton
species was possible.

In monospecific grazing trials Strom et al. (2003a) noted
reduced microzooplankton grazing rates on strains of high DMS-
producing phytoplankton, suggesting that DMS and related
compounds function as grazing deterrents, thus forming an
antigrazing mechanism (Wolfe et al., 1997). In the field, reduced
grazing rates on high infochemical producing phytoplankton may
allow the propagation of a bloom (Strom, 2008). However, field
evidence for microzooplankton selectivity based on phytoplankton
infochemical characteristics shows a high degree of variability
(Archer et al., 2001b; Holligan et al., 1993; Olson and Strom, 2002).

The idea of an induced chemical defense in unicellular marine
algae is a subject under debate. This idea is highly controversial
because natural selection maximizes fitness at the level of the
individual (Krebs, 2009). In the marine environment, individual
cells lack fixed spatial associations and, therefore, despite the
occurrence of genetically identical daughter cells, grazing-induced
infochemicals are not selectively targeted (Lewis, 1986). Conse-
quently, the benefits of the chemical defense would be shared not
only by genetically similar cells but also by cells of other competing
phytoplankton species. This is not an evolutionary stable strategy
as it gives rise to ‘cheaters’ who gain the benefits of the chemical
defense without the metabolic costs of its production (Lewis,
1986), illustrated by reduced growth rates in this model. However,
some chemicals proposed to have defensive functions, such as DMS
and related compounds, also serve several intracellular functions
(e.g. Malin and Kirst, 1997; Sunda et al., 2002). It has therefore been
proposed that marginal fitness benefits of such defense mecha-
nisms are driven by the need for metabolic processes (Pohnert
et al., 2007).

To our knowledge, this work presents the first attempt to model
infochemicals as chemoattractants in a phytoplankton competi-
tion model. When infochemicals were modeled as grazing
attractors, a range of different scenarios could occur depending
Please cite this article in press as: Lewis, N.D., et al., Role of infochemic
model. Ecol. Complex. (2012), http://dx.doi.org/10.1016/j.ecocom.20
on competitive coefficients and grazing selectivity. Our key result is
that when microzooplankton showed no selectivity in the model
(g = 0.5) infochemical producing phytoplankton were always driven
to extinction, but when these phytoplankton produce chemoat-
tractants that increase their own susceptibility to grazing it was
possible for the infochemical producing population to survive in the
system. This counterintuitive result can be explained through the
promotion of multitrophic interactions; the release of grazing-
induced infochemicals increases the susceptibility of microzoo-
plankton to copepod predation, thus providing a grazing refuge for
infochemical-producing phytoplankton. This situation may occur in
the plankton where DMS has been shown to stimulate foraging
behaviors in copepods (Steinke et al., 2006). Small DMS-producing
phytoplankton such as Emiliania huxleyi are grazed inefficiently by
copepods (Nejstgaard et al., 1997), however, microzooplankton
grazing-induced production of DMS may provide E. huxleyi with a
refuge from grazing. This result is supported by Lewis et al. (2012)
who modeled infochemical-mediated multi-trophic interactions in
the absence of a competing algal species.

Chemical cues play important roles in the structure and
functioning of marine food webs (Hay, 2009), However, in many
cases the infochemicals that affect the behavior of planktonic
organisms are poorly understood (Pohnert et al., 2007). The model
presented here gives an insight into the possible functions of
infochemicals in the ecology of marine planktonic food webs, and
supports the notion that infochemicals have potentially important
consequences for the dynamics of marine food webs.
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