991 research outputs found
Development of the German A-4 guidance and control system, 1939 - 1945: A memoir
The development by 1943 of a fully inertial navigational system for the German A-4 (V-2) missile is detailed. This flight control system used a triple-axis stabilized platform with two longitudinal accelerometers and one lateral accelerometer
Importance of the use of extraterrestrial resources to the economy of space flight beyond near-earth orbit
Importance of use of extraterrestrial resources to economy of space flight beyond near earth orbi
Canonical formulation of self-gravitating spinning-object systems
Based on the Arnowitt-Deser-Misner (ADM) canonical formulation of general
relativity, a canonical formulation of gravitationally interacting classical
spinning-object systems is given to linear order in spin. The constructed
position, linear momentum and spin variables fulfill standard Poisson bracket
relations. A spatially symmetric time gauge for the tetrad field is introduced.
The achieved formulation is of fully reduced form without unresolved
constraints, supplementary, gauge, or coordinate conditions. The canonical
field momentum is not related to the extrinsic curvature of spacelike
hypersurfaces in standard ADM form. A new reduction of the tetrad degrees of
freedom to the Einstein form of the metric field is suggested.Comment: 6 pages. v2: extended version; identical to the published one. v3:
corrected misprints in (24) and (39); improved notation; added note regarding
a further reference
Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean
Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania.
The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered.
The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors
Performance analysis of d-dimensional quantum cryptography under state-dependent diffraction
Standard protocols for quantum key distribution (QKD) require that the sender
be able to transmit in two or more mutually unbiased bases. Here, we analyze
the extent to which the performance of QKD is degraded by diffraction effects
that become relevant for long propagation distances and limited sizes of
apertures. In such a scenario, different states experience different amounts of
diffraction, leading to state-dependent loss and phase acquisition, causing an
increased error rate and security loophole at the receiver. To solve this
problem, we propose a pre-compensation protocol based on pre-shaping the
transverse structure of quantum states. We demonstrate, both theoretically and
experimentally, that when performing QKD over a link with known,
symbol-dependent loss and phase shift, the performance of QKD will be better if
we intentionally increase the loss of certain symbols to make the loss and
phase shift of all states same. Our results show that the pre-compensated
protocol can significantly reduce the error rate induced by state-dependent
diffraction and thereby improve the secure key rate of QKD systems without
sacrificing the security.Comment: 10 pages, 6 figure
Hamiltonian of a spinning test-particle in curved spacetime
Using a Legendre transformation, we compute the unconstrained Hamiltonian of
a spinning test-particle in a curved spacetime at linear order in the particle
spin. The equations of motion of this unconstrained Hamiltonian coincide with
the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac
brackets to derive the constrained Hamiltonian and the corresponding
phase-space algebra in the Newton-Wigner spin supplementary condition (SSC),
suitably generalized to curved spacetime, and find that the phase-space algebra
(q,p,S) is canonical at linear order in the particle spin. We provide explicit
expressions for this Hamiltonian in a spherically symmetric spacetime, both in
isotropic and spherical coordinates, and in the Kerr spacetime in
Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when
expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner
(ADM) canonical Hamiltonian computed in PN theory in the test-particle limit.
Notably, we recover the known spin-orbit couplings through 2.5PN order and the
spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr
being the spin of the Kerr spacetime. Our method allows one to compute the PN
Hamiltonian at any order, in the test-particle limit and at linear order in the
particle spin. As an application we compute it at 3.5PN order.Comment: Corrected typo in the ADM Hamiltonian at 3.5 PN order (eq. 6.20
Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer
The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development
Novel approaches for the serodiagnosis of louse-borne relapsing fever
Louse-borne relapsing fever (LBRF) caused by B. recurrentis is a poverty-related and neglected infectious disease with an endemic focus in the Horn of Africa. Re-emergence of the disease occurred in Europe during the refugee crisis in 2015 and sporadic outbreaks were frequently reported in Eastern Africa where poor settings lack affordable diagnostics. Currently, there are no validated in vitro assays available for the serodiagnosis of LBRF. The aim of this study was to develop novel and reliable immunoassays by investigating clinically suspected and culture-confirmed serum samples from LBRF patients and a broad panel of serum samples from patients with other spirochetal, bacterial, and parasitic diseases. We identified two immunoreactive antigens (complement-inhibiting protein CihC and the glycerophosphodiester phosphodiesterase GlpQ of B. recurrentis) as the most promising target candidates leading to the evaluation of two immunoassays (line immunoblot and ELISA) for IgM and IgG. To optimize the IgM immunoassay, we conducted a bioinformatic approach to localize the relevant immunogenic regions within CihC. By utilizing a N-terminal CihC fragment, the sensitivity and specificity of both immunoassays (CihC and GlpQ) were high (IgM: sensitivity 100%, specificity of 89.9%, IgG: sensitivity 100%, specificity 99.2%). In conclusion, our findings indicate the diagnostic potential of CihC and GlpQ as valuable markers for the serodiagnosis of LBRF even at early time points of infection. Here, we provide strong evidence for the utilization of these immunoassays as reliable tools in clinical practice
Multipolar equations of motion for extended test bodies in General Relativity
We derive the equations of motion of an extended test body in the context of
Einstein's theory of gravitation. The equations of motion are obtained via a
multipolar approximation method and are given up to the quadrupolar order.
Special emphasis is put on the explicit construction of the so-called canonical
form of the energy-momentum density. The set of gravitational multipolar
moments and the corresponding equations of motion allow for a systematic
comparison to competing multipolar approximation schemes.Comment: 18 pages, RevTex format, published versio
- …