28,877 research outputs found
OPE analysis of the nucleon scattering tensor including weak interaction and finite mass effects
We perform a systematic operator product expansion of the most general form
of the nucleon scattering tensor including electro-magnetic and
weak interaction processes. Finite quark masses are taken into account and a
number of higher-twist corrections are included. In this way we derive
relations between the lowest moments of all 14 structure functions and matrix
elements of local operators. Besides reproducing well-known results, new sum
rules for parity-violating polarized structure functions and new mass
correction terms are obtained.Comment: 50 pages, additional references adde
Geometric relationships for homogenization in single-phase binary alloy systems
A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship
Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrVO ( = Co, Mn)
Magnetic correlations of two iso-structural quasi-one-dimensional (1D)
antiferromagnetic spin-chain compounds SrVO ( = Co, Mn) have
been investigated by magnetization and powder neutron diffraction. Two
different collinear antiferromagnetic (AFM) structures, characterized by the
propagation vectors, = (0 0 1) and = (0 0 0), have been found below
5.2 K and 42.2 K for the Co- and Mn-compounds, respectively. For
the Mn-compound, AFM chains (along the axis) order ferromagnetically within
the plane, whereas, for the Co-compound, AFM chains order
ferro-/antiferromagnetically along the direction. The critical exponent
study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg
universality classes, respectively. For both compounds, short-range spin-spin
correlations are present over a wide temperature range above . The reduced
ordered moments at base temperature (1.5 K) indicate the presence of quantum
fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table
Infrared astronomy research and high altitude observations
Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects
The role of surface generated radicals in catalytic combustion
Experiments were conducted to better understand the role of catalytic surface reactions in determining the ignition characteristics of practical catalytic combustors. Hydrocarbon concentrations, carbon monoxide and carbon dioxide concentrations, hydroxyl radical concentrations, and gas temperature were measured at the exit of a platinum coated, stacked plate, catalytic combustor during the ignition of lean propane-air mixtures. The substrate temperature profile was also measured during the ignition transient. Ignition was initiated by suddenly turning on the fuel and the time to reach steady state was of the order of 10 minutes. The gas phase reaction, showed no pronounced effect due to the catalytic surface reactions, except the absence of a hydroxyl radical overshoot. It is found that the transient ignition measurements are valuable in understanding the steady state performance characteristics
Diffractive charged meson pair production
We investigate the possibility to measure the nonforward gluon distribution
function by means of diffractively produced \pi^+\pi^- and K^+K^- pairs in
polarized lepton nucleon scattering. The resulting cross sections are small and
are dominated by the gluonic contribution. We find relatively large spin
asymmetries, both for \pi^+\pi^- and for K^+K^- pairs.Comment: 15 pages, version with changed kinematical cuts, to be pubished in
Phys.Lett.
Identification of gravity waves in hydrodynamical simulations
The excitation of internal gravity waves by an entropy bubble oscillating in
an isothermal atmosphere is investigated using direct two-dimensional numerical
simulations. The oscillation field is measured by a projection of the simulated
velocity field onto the anelastic solutions of the linear eigenvalue problem
for the perturbations. This facilitates a quantitative study of both the
spectrum and the amplitudes of excited g-modes.Comment: 12 pages, 11 figures, Appendices only available onlin
Cohort profile: the Siyakhula cohort, rural South Africa
No abstract available
Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve
Journal ArticleWe studied the consequences of long-term implantation of a penetrating microelectrode array in peripheral nerve over the time course of 4-6 mo. Electrode arrays without lead wires were implanted to test the ability of different containment systems to protect the array and nerve during contractions of surrounding muscles. Treadmill walking was monitored and the animals showed no functional deficits as a result of implantation. In a different set of experiments, electrodes with lead wires were implanted for up to 7 mo and the animals were tested at 2-4 week intervals at which time stimulation thresholds and recorded sensory activity were monitored for every electrode. It was shown that surgical technique highly affected the long-term stimulation results. Results between measurement sessions were compared, and in the best case, the stimulation properties stabilized in 80% of the electrodes over the course of the experiment (162 days). The recorded sensory signals, however, were not stable over time. A histological analysis performed on all implanted tissues indicated that the morphology and fiber density of the nerve around the electrodes were normal
Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion
Journal ArticleMuscle, cutaneous and joint afferents continuously signal information about the position and movement of individual joints. How does the nervous system extract more global information, for example about the position of the foot in space? To study this question we used microelectrode arrays to record impulses simultaneously from up to 100 discriminable nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the hindlimb was displaced passively with a random trajectory, the firing rate of the neurones could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or joint angular coordinates. The process could also be reversed to predict the kinematics of the limb from the firing rates of the neurones with an accuracy of 1-2 cm. Predictions of position and velocity could be combined to give an improved fit to limb position. Decoders trained using random movements successfully predicted cyclic movements and movements in which the limb was displaced from a central point to various positions in the periphery. A small number of highly informative neurones (6-8) could account for over 80% of the variance in position and a similar result was obtained in a realistic limb model. In conclusion, this work illustrates how populations of sensory receptors may encode a sense of limb position and how the firing of even a small number of neurones can be used to decode the position of the limb in space
- …