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RESEARCH OBJECTIVES

Numerous studies of the feasibility of applying catalytic combustion to

practical combustion systems have been made in recent years. This work has

been motivated by the potential advantages of high temperature catalytically

assisted combustion over conventional combustion. These studies include the

development of catalytic combustor, for aircraft gas turbines [1-6], station-

ary gas turbines [7-12], highway vehicle gas turbines [13-17] and boilers

[11]. Other studies have focused on catalytic combustion of particular fuels

such as methane [18-20], low -BTU gases [9,21], No. 6 oil [22], heavy fuels

[23] and coal derived liquids [24]. The potential for low conversion of

fuel-bound nitrogen to NO  has also been investigated [22,25-29]. The ad-

vantages of catalytic combustion which have been demonstrated by such stud-

ies include lower emissions, higher efficiency, increased operational

stability, stable operation at lower equivalence ratios, improved pattern

factor and wider fuel specifications, Still other work has been concerned

with catalyst durability [30,31] and with the development of mathematical

models which can be used to interpret experimental data and for combustor

design optimization [32-37].

Under typical catalytic combustion operating conditions there are a

number of physical and chemical processes which are important in terms of

the catalytic combustor performance [38-40]. These include axial and radial

convection of species, heat and momentum; axial and radial diffusion of

species, heat and momentum; axial heat transfer in the substrate by conduc-

tion and radiation; gas phase chemical reactions and surface chemical reac-

tions. The overall conversion efficiency of a catalytic combustor under

normal operating conditions is typically mass transfer limited, with most
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of the fuel being consumed near the channel entrance by surface reactions

and the remaining fuel being consumed near the channel exit by gas phase

reactions.

Specific studies have been made -to elucidate the roles of the various

physical and chemical processes which effect catalytic combustion. For

example, Marteney and Kesten j1l] diluted the reacting mixture with argon,

thereby limiting the temperature rise and making the surface reactions dom-

inant. Bruno et al. (42] ran with CO/0 2/inert mixtures and by changing the

inert (N2 , A, He and CO, were used) the diffusion characteristics of the flow

field were varied. Hiam et al. [43] and Schwartz at al. [44] have measured

the heterogeneous ignition temperatures as indicated by exothermic surface

reactions on platinum and palladium filaments exposed to flows of various

hydrocarbon-oxygen mixtures. Ablow et al. [45] theoretically and experimen-

tally studied the relative importance of gas phase and surface reactions for

the case of catalytic combustion in a stagnation point boundary layer, the

advantage being that such a flow field is well understood thus simplifying

the formulation of the mathematical model which was used to interpret the

experimental results.

The objective of this research was to improve our understanding of the

role of catalytic surface reactions in determining the performance character-

istics of practical catalytic combustors. It is generally acknowledged that

under typical fuel lean operating conditions, fuel and oxygen react on the

surface to form water and carbon dioxide and that the resultant heat release

and fuel consumption act to enhance and inhibit, respectively, the downstream

gas phase and surface reactions. Since the competition between these two

processes is very important in determining the gas phase ignition. characteristics
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for flow over a catalytic surface [46], ,part one of this research was to

experimentally characterize the ignition of lean propane/air mixtures over

a platinum catalyst. Although there had been several theoretical studies of

this process [33, 35, 46-48], prior to this work there had been no experimental

studies. The experiments conducted in this study consisted of measurements

of the catalyst substrate temperature profile and exhaust gas composition

during the transient ignition process that follows the sudden turn on of the

fuel.

The second part of this research was the investigation of the possibility

that intermediate or radical species generated by the catalytic wall reactions

can diffuse ii.to the gas phase boundary layer and homogeneously catalyze the

gas phase reactions. That such an effect may play a role in catalytic com-

bustion is supported by low pressure studies of the oxidation of hydrogen on

platinum where she production of OH was observed above catalyst temperatures

of approximately 800°K [49-51]. It is also interesting that preliminary

results using detailed kinetics for CO/air mixtures at atmospheric pressure

indicate that H 202 and H0 2 , present in finite amounts in the same tempera-

ture range, are good candidates as species easily decomposed by platinum to

form OH [52]. That significant OH production occurs at the catalytic wall

under catalytic combustion conditions is also consistent with the experimental

observations of Cattolica and Schefer [53,54] where they found net OH pro-

duction in the boundary layer near the leading edge of a heated platinum

plate in an H 2/air flow. Although the generation of radicals by catalytic

processes and the effect on gas phase reactions has been previously observed

[55], the importance of this phenomenon in catalytic combustion systems had

not been previously studied. Such a phenomenon could be particularly important.

3
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in determining the ignition temperatures, flammability limits, emission
i

characteristics, sooting behavior and flame stabilization characteristics of

practical catalytic combustors.

The second part of this research was an experimental study of the effect

of surfare generated OH radicals during the combustion of propane-air mix- .

tures over platinum coated catalysts under catalytic combustion conditions,
k	 .

In particular, laser induced fluorescence was used to measure OH radical con-

centration immediately downstream of two catalytic plates in a stacked plate

catalyst bed. It is important to realize that the effect of surface gener-

ated radicals should be evaluated under catalytic combustion conditions. This

is because catalytic ignition, combustion and extinction involve the coupling

of chemistry and fluid dynamics through the processes of gaseous convection

and diffusion, substrate conduction and radiation, and gas and surface chem-

ical reactions. It is the relative importance and the interaction of these

phenomena which determine the overall performance characteristics such as

ignition temperature or blowout limit, of a given catalyst-fuel system.

4
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STATUS OF THE RESEARCH

Description of the Experiment

Both the transient measurement and the OH radical measurements were

conducted in the same stacked plate catalytic combustor, which consisted of

nine flat catalytic plates (100 mm long, 50 mm wide, 1 mm thick), spaced

6 mm apart. The catalyst plates (supplied by W. Retallick) were made from

a steel alloy substrate, with an aluminum oxide barrier and an outer coating

of platinum. Six 0.75 mm diameter holes were drilled into the side of the

center plate at six axial locations and chromes-alumel thermocouples were
l

inserted into these holes for measurements of the plate's axial temperature

i profile. A combination water cooled, gas sampling and thermcouple probe was

used to obtain gas composition and temperature measurements at the exit of 	 5
F

the catalyst bed. All experiments were with lean propane-air mixtures at 	 p

one atmosphere pressure. In the transient experiments the inlet temperature

and velocity were fixed, the fuel was turned on, and the transient response 	 I

of the catalyst axial temperature profile and of the exhaust gas temperature 	
fI

and composition (i.e. carbon monoxide, carbon dioxide, propane, propylene,

ethane, ethylene and methane) were measured at several axial locations along

the length of the catalyst bed. The fuel transient, which was measured under

cold flow conditions with a hot wire anemometer, was less than one second.

The carbon monoxide and carbon dioxide measurements were made using non-

dispersive infrared gas analyzers, which have a characteristic response time

j	 of less than five seconds. The hydrocarbon measurements were made using a

multi-loop gas sample storage system with subsequent analysis by gas chro-

matography. The characteristic response time of the multi-loop gas sample

system was less than ten seconds.
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Optical access was available at several axial locations along the length

of the catal yst bed through ten millimeter diameter windows located on oppo-

site sides of the test section. Based on a similar experiment by Cattolica

and Schefer [53,54], it was anticipated that the OH concentrations would be

large enough for detection by resonance absorption spectroscopy. Under the

conditions of our experiment the OH detection limit using the absorption tech-

nique was about 10 16/cc, as compared to equilibrium OH concentrations of about

10 13/cc (based on the overall equivalence ratio and the catalyst temperature).

Measurements were attempted in the stacked plate combustor using resonance

absorption and were unsuccessful, implying that the OH concentration was less

than 10 16/cc but still possibly greater than the overall equilibrium concen-

tration. In order to extend the OH detection limits it was decided to use

laser induced fluorescence (LIF). Because of the limited optical access with

the stacked plate configuration, it was necessary to use "forward scatter"

collection. The spatial resolution with this configuration is comparable to

that of the absorption measurements, which is adequate for the two dimensional

flow field between the catalyst plates. The main difficulty with this approach

is in separating the fluorescence from the laser light. The optical config-

uration that has been successfully used is shown in Figure 1.

\	 V	 P0.15Z	 Y	 Y	 PRISM	 "	 `	 DOUBLE	 A'
LENS	 POLARIZER	

FLAT PLATE	
POLARIZER	 HONOCNRO METER	 N

CATALYTIC	 'd

FILTER	
COMBUSTOR	 6

DETECTOR

Figure 1. Laser Induced Fluorescence experimental configuration for catalytic
combustion measurements.
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The absorption transition is v = 0 to v -1 at 2820 A and the fluorescence

from V= 1 to v = 0 at 3090 A is detected. The use of polarization rejection

and a 0.25 meter double monochrometer effectively blocks the laser light.

The detection limit with the "forward scatter" LIF was approximately 1012/cc.

The laser used for the OH measurements was a Nd;YAG pumped dye laser

which was frequency doubled to obtain the required ultraviolet wavelengths.

The dy e laser used a diffraction grating at grazing incidence. The

resultant linewidth after frequency doubling was approximately 0.1 cm 
l	

A

typical OH excitation spectra obtained with this laser system and the "for-

ward scatter" LIF in a methane - air flat flame burner is shown in Figure 2.

The OH concentration measurements were made with the laser wavelength fixed

on the Q l ( 2) line and a spectrometer slit function of 20A.
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Figure 2. OH excitation spectra from methane-air flat flame.
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Transient Measurement Results

The transient response of the substrate temperature profile is shown

in Figures 5 and 4 there it can be seen that the front of the catalyst heats

up first due to heat release iay the catalytic surface reactions.
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These reactions however consume fuel and therefore the downstream sections

of the catalyst are exposed to a lower equivalence ratio. The subsequent

heat up of the back of the catlyst is strongly dependent on convective heat

transfer from the front of the catalyst as can be seen by the fact that the

back of the catalyst heats up more quickly when the reference velocity is
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increased from 6 m/s to 10 m/s. The steady state temperature profile appears

to be relatively insensitive to a change in reference velocity from 6 m/s to

10 m/s when the equivalence ratio is O.S. However, when the equivalence ratio

is lowered to 0.25 this same change in reference velocity has a pronounced

effect on the steady state substrate temperature profile.

The transient exhaust gas composition measurements for the 6 m/s refer-

ence velocity, 700°K inlet temperature, 0.3 equivalence ratio case are shown

in Figures 5 and 6. These measurements were made 25 mm downstream of the

catalyst bed exit. The CO 2 concentration (Figure S) is found to increase

9
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immediately after the fuel is turned on, due to the oxidation of the propane

on the catalyst surface, to a value of 6000 PPM which corresponds to a pro-

pane conversion efficiency of 50. After this sudden increase in CO2 the

catalyst surface is totally covered and the conversion becomes controlled by

the surface reaction rate, As the surface temperature increases (TC H5) the

surface reaction rate increases resulting in a slow increase in the CO 2 emis-

sions. It is not clear from these results when and to what extent the cata-

lyst's performance becomes diffusion controlled before it reaches steady state.
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At approximately 550 seconds after the fuel is turned on, CO appears in the

exhaust (Figure 5). The CO concentration increases to a maximum of 5000 PPDI

at 800 seconds and then decreases to a steady state level of less than 1000

PPM. The appearance and subsequent disappearance of CO are due to gas phase

reactions, since under these conditions it is well established that propane

oxidizes directly to water and carbon dioxide on platinum catalysts.

The transient hydrocarbon emissions (Figure 6) are consistent with the

explanation for CO and CO 2 emissions. The propane concentration decreases
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without an), significant intermediate hydrocarbon concentrations until approx-

imately 500 seconds when the gas temperature becomes sufficiently high for

the gas phase reactions to begin. Once the gas phase reactions begin, some

of the propane breaks down into C1 to C3 hydrocarbons. As the gas tempera-

ture increases, but slightly before the CO peak in Figure 5, the intermediate

hydrocarbon concentrations peak. As the gas temperature increases further

the intermediate hydrocarbons are oxidized to form water and carbon monoxide.

And as shown in Figure 5 the carbon monoxide is then oxidized to form carbon

dioxide. This behavior of the carbon monoxide and intermediate hydrocarbons

is very similar to what has been observed by others in purely gas phase

reactions under nearly identical conditions. Similar even in terms of the	 t̂ t'

11
relative concentrations of the intermediate hydrocarbons and the fact that

the hydrocarbons peaks before the carbon monoxide. This similarlity suggests 	 '11

that there is not a strong or pronounced effect of the surface reactions on 	
it

^r
the gas phase reactions.

Figure 7 shows the effect of lowering the equivalence ratio to 0.25 on

the transient hydrocarbon emissions. We see the onset of gas phase reactions 	 6 }

as indicated by the rise in the intermediate hydrocarbon concentrations, how- 	
g

ever, the reactions do not go to completion and there are significant unburned
i

hydrocarbon emissions at steady state. This result shows the important role
F
r

of gas phase reactions in achieving high combustion efficiency in catalytic

combustors.

The effect of reference velocity on CO and CO2 emission is shown in

Figure B. As the gas velocity increases the CO 2 emissions are found to de-

crease which is primarily due to the shortened residence time. The 3 m/s

and 6 m/s cases show evidence of the onset of gas phase reactions by the

12
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Figure 7. Transient exhaust gas hydrocarbon concentrations: Inlet tempera-
ture = 700°R, propane/air equivalence ratio = 0.25, reference
velocity = 6 m/s.

increase in CO emissions at approximately 600 seconds and 300 seconds, respec-

tively. As the gas velocity is increased from 3 m/s to 6 m/s, the convective

heat transfer from the front of the catalyst bed increases causing the gas

phase reactions to begin earlier. However, as the gas velocity is further

increased to 12 m/s the effect of snortened residence time dominates and the

onset of gas phase reactions is not observed. These CO results demonstrate

the valuable insights that can be gained from the transient ignition measure-

ments. Attempting to explain the steady state CO emissions results without

the transient results would have been very difficult.
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OH Measurement Results

Attempts were made to detect OH radicals within and at the exit of the

catalyst bed at propane in air equivalence ratios of 0.25 and 0.3, reference

velocities of 3, 6 and 12 m/s, and at inlet temperatures up to 70O e K with

no success. It was only by increasing the equivalence ratio to 0.35 at an

inlet temperature of 7OO * K and reference velocity of 3 m/s that we were able

to detect OH at the exit of the catalyst bed. The transient CO, CO 2 and

14
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ratio = 0.35, reference velocity = 3 m/s.

As observed previously the occurrence of gas phase reactions is evident by

the peak and subsequent consumption of the intermediate hydrocarbons and

carbon monoxide. The corresponding transient OH concentration measurement

is shown in Figure 11. As has been observed under gas phase conditions the

OH concentration begins to increase in the post-flame region after the dis-

appearance of the intermediate hydrocarbons and carbon monoxide, reaching a

steady state level in the downstream post-flame gases which corresponds to
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velocity = 3 m/s.

its equilibrium value. The LIF measurement from which Figure 11 was obtained

was calibrated by assuming that the steady state OH concentration was equal

to the equilibrium OH concentration based on the overall equivalence ratio

and the exhaust gas temperature. One notable discrepancy between this result

and the purely gas phase reaction result is the absence of an OH radical

overshoot. This suggests the possibility that the platinum catalyst is act-

ing as a source of OH radicals, which is very reasonable given the presence

of water and the high surface temperature, and that the steady state OH
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concentration is actually in excess of the equilibrium concentration. Un-

fortunately independent calibration of the OH measurement requires an absorp-

tion measurement but this was not possible because of the low OH concentra-

tions.

i
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