18,155 research outputs found
On the Fourier transform of the characteristic functions of domains with -smooth boundary
We consider domains with -smooth boundary and
study the following question: when the Fourier transform of the
characteristic function belongs to ?Comment: added two references; added footnotes on pages 6 and 1
Asymptotic Exit Location Distributions in the Stochastic Exit Problem
Consider a two-dimensional continuous-time dynamical system, with an
attracting fixed point . If the deterministic dynamics are perturbed by
white noise (random perturbations) of strength , the system state
will eventually leave the domain of attraction of . We analyse the
case when, as , the exit location on the boundary
is increasingly concentrated near a saddle point of the
deterministic dynamics. We show that the asymptotic form of the exit location
distribution on is generically non-Gaussian and asymmetric,
and classify the possible limiting distributions. A key role is played by a
parameter , equal to the ratio of the stable
and unstable eigenvalues of the linearized deterministic flow at . If
then the exit location distribution is generically asymptotic as
to a Weibull distribution with shape parameter , on the
length scale near . If it is generically
asymptotic to a distribution on the length scale, whose
moments we compute. The asymmetry of the asymptotic exit location distribution
is attributable to the generic presence of a `classically forbidden' region: a
wedge-shaped subset of with as vertex, which is reached from ,
in the limit, only via `bent' (non-smooth) fluctuational paths
that first pass through the vicinity of . We deduce from the presence of
this forbidden region that the classical Eyring formula for the
small- exponential asymptotics of the mean first exit time is
generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy
requests to [email protected] or [email protected]
A phase transition in a system driven by coloured noise
For a system driven by coloured noise, we investigate the activation energy of escape, and the dynamics during the escape. We have performed analogue experiments to measure the change in activation energy as the power spectrum of the noise varies. An adiabatic approach based on path integral theory allows us to calculate analytically the critical value at which a phase transition in the activation energy occurs
The Order of Phase Transitions in Barrier Crossing
A spatially extended classical system with metastable states subject to weak
spatiotemporal noise can exhibit a transition in its activation behavior when
one or more external parameters are varied. Depending on the potential, the
transition can be first or second-order, but there exists no systematic theory
of the relation between the order of the transition and the shape of the
potential barrier. In this paper, we address that question in detail for a
general class of systems whose order parameter is describable by a classical
field that can vary both in space and time, and whose zero-noise dynamics are
governed by a smooth polynomial potential. We show that a quartic potential
barrier can only have second-order transitions, confirming an earlier
conjecture [1]. We then derive, through a combination of analytical and
numerical arguments, both necessary conditions and sufficient conditions to
have a first-order vs. a second-order transition in noise-induced activation
behavior, for a large class of systems with smooth polynomial potentials of
arbitrary order. We find in particular that the order of the transition is
especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version
accepted for publication by Phys. Rev.
Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular jacobians of genus 2 curves
This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group. Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases, the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size of the 2-torsion of the Shafarevich-Tate group, which we could compute
Estimates in Beurling--Helson type theorems. Multidimensional case
We consider the spaces of functions on the
-dimensional torus such that the sequence of the Fourier
coefficients belongs to
. The norm on is defined by
. We study the rate of
growth of the norms as
for -smooth real
functions on (the one-dimensional case was investigated
by the author earlier). The lower estimates that we obtain have direct
analogues for the spaces
Infinite dimensional integrals beyond Monte Carlo methods: yet another approach to normalized infinite dimensional integrals
An approach to (normalized) infinite dimensional integrals, including
normalized oscillatory integrals, through a sequence of evaluations in the
spirit of the Monte Carlo method for probability measures is proposed. in this
approach the normalization through the partition function is included in the
definition. For suitable sequences of evaluations, the ("classical")
expectation values of cylinder functions are recoveredComment: Submitted as a communication in the ICMSQUARE conference, september
201
Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments
With continued advances in Geographic Information Systems and related
computational technologies, statisticians are often required to analyze very
large spatial datasets. This has generated substantial interest over the last
decade, already too vast to be summarized here, in scalable methodologies for
analyzing large spatial datasets. Scalable spatial process models have been
found especially attractive due to their richness and flexibility and,
particularly so in the Bayesian paradigm, due to their presence in hierarchical
model settings. However, the vast majority of research articles present in this
domain have been geared toward innovative theory or more complex model
development. Very limited attention has been accorded to approaches for easily
implementable scalable hierarchical models for the practicing scientist or
spatial analyst. This article is submitted to the Practice section of the
journal with the aim of developing massively scalable Bayesian approaches that
can rapidly deliver Bayesian inference on spatial process that are practically
indistinguishable from inference obtained using more expensive alternatives. A
key emphasis is on implementation within very standard (modest) computing
environments (e.g., a standard desktop or laptop) using easily available
statistical software packages without requiring message-parsing interfaces or
parallel programming paradigms. Key insights are offered regarding assumptions
and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table
- …