31,603 research outputs found

    Elections and the Timing of Devaluations

    Get PDF
    This paper presents a rational political budget cycle model for the open economy, in which devaluations are delayed in the run-up to elections, in order to increase the electoral chances of the party in office. By concentrating on the closed economy, previous political cycle models had overlooked the influence of elections on the behavior of exchange rates. We introduce voter uncertainty in two different dimensions. Not only are voters uncertain regarding the competency of the incumbent. They also ignore the degree to which the incumbent is opportunistic, i.e. willing to distort the economy for electoral gain. When there is only uncertainty about competence, we obtain a separating equilibrium, like in the previous political budget cycle literature. However, when uncertainty about opportunism is introduced, a partially pooling equilibrium emerges: an incompetent, opportunistic incumbent delays a devaluation until after elections, mimicking a competent incumbent, while the competent does not distort the optimal pattern of the exchange rate, regardless of the degree of opportunism. The model's prediction that there is a tendency to delay devaluations until after elections is used to look at the empirical evidence on devaluations around elections.devaluations, elections, political budget cycles, incomplete information.

    Elections and the Timing of Devaluations

    Get PDF
    This paper presents a rational political budget cycle model for an open economy, in which devaluations are delayed in the pre-election period so as to increase the electoral chances of the party in office. By concentrating on closed economies, previous political cycle models had overlooked the influence of elections on the behavior of exchange rates. Voter uncertainty is introduced in two different dimensions. Not only are voters uncertain regarding the competency of the incumbent, but tey also ignore the degree to which the incumbent is opportunistic.

    Radon gas, useful for medical purposes, safely fixed in quartz

    Get PDF
    Radon gas is enclosed in quartz or glass ampules by subjecting the gas sealed at a low pressure in the ampules to an ionization process. This process is useful for preparing fixed radon sources for radiological treatment of malignancies, without the danger of releasing radioactive gases

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains D⊆RnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation

    Get PDF
    The computationally demanding nature of radiative-hydrodynamical simulations of stellar surface convection warrants an investigation of the sensitivity of the convective structure and spectral synthesis to the numerical resolution and dimension of the simulations, which is presented here. With too coarse a resolution the predicted spectral lines tend to be too narrow, reflecting insufficient Doppler broadening from the convective motions, while at the currently highest affordable resolution the line shapes have converged essentially perfectly to the observed profiles. Similar conclusions are drawn from the line asymmetries and shifts. In terms of abundances, weak FeI and FeII lines show a very small dependence (~0.02 dex) while for intermediate strong lines with significant non-thermal broadening the sensitivity increases (~0.10 dex). Problems arise when using 2D convection simulations to describe an inherent 3D phenomenon, which translates to inaccurate atmospheric velocity fields and temperature and pressure structures. In 2D the theoretical line profiles tend to be too shallow and broad compared with the 3D calculations and observations, in particular for intermediate strong lines. In terms of abundances, the 2D results are systematically about 0.1 dex lower than for the 3D case for FeI lines. Furthermore, the predicted line asymmetries and shifts are much inferior in 2D. Given these shortcomings and computing time considerations it is better to use 3D simulations of even modest resolution than high-resolution 2D simulations.Comment: Accepted for A&

    STOP - A computer program for supersonic transport trajectory optimization

    Get PDF
    IBM 7094 digital program using steepest ascent technique for optimizing flight path of supersonic transport aircraf

    Using rewards and penalties to obtain desired subject performance

    Get PDF
    Operant conditioning procedures, specifically the use of negative reinforcement, in achieving stable learning behavior is described. The critical tracking test (CTT) a method of detecting human operator impairment was tested. A pass level is set for each subject, based on that subject's asymptotic skill level while sober. It is critical that complete training take place before the individualized pass level is set in order that the impairment can be detected. The results provide a more general basis for the application of reward/penalty structures in manual control research

    A simulation of solar convection at supergranulation scale

    Full text link
    We present here numerical simulations of surface solar convection which cover a box of 30×30×\times30\times3.2 Mm3^3 with a resolution of 315×315×\times315\times82, which is used to investigate the dynamics of scales larger than granulation. No structure resembling supergranulation is present; possibly higher Reynolds numbers (i.e. higher numerical resolution), or magnetic fields, or greater depth are necessary. The results also show interesting aspects of granular dynamics which are briefly presented, like extensive p-mode ridges in the k-ω\omega diagram and a ringlike distribution of horizontal vorticity around granules. At large scales, the horizontal velocity is much larger than the vertical velocity and the vertical motion is dominated by p-mode oscillations.Comment: Contribution to the proceedings of the workshop entitled "THEMIS and the new frontiers of solar atmosphere dynamics" (March 2001), 6 pages, to appear in Nuovo Cimento

    Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation

    Full text link
    Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with size of 60x60 Mm in horizontal direction and by depth 20 Mm from level of the visible solar surface. We use a realistic initial model of the Sun and apply equation of state and opacities of stellar matter. The equations of fully compressible radiation magnetohydrodynamics with dynamical viscosity and gravity are solved. We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics, 2) the diffusion approximation for the radiative transfer, 3) dynamical viscosity from subgrid scale modeling. In simulation we take uniform two-dimesional grid in gorizontal plane and nonuniform grid in vertical direction with number of cells 600x600x204. We use 512 processors with distributed memory multiprocessors on supercomputer MVS-100k in the Joint Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 / SOHO XXI conferenc
    • …
    corecore