CR-793
NASA

STOP - A COMPUTER PROGRAM FOR SUPERSONIC TRANSPORT TRAJECTORY OPTIMIZATION

by Lawrence H. Stein, Malcolm L. Matthews, and Joel W. Frenk

Prepared by
THE BOEING COMPANY
Seattle, Wash.
for Langley Research Center

By Lawrence H．Stein，Malcolm L．Matthews， and Joel W．Frenk

Distribution of this report is provided in the interest of information exchange．Responsibility for the contents resides in the author or organization that prepared it．

Prepared under Contract No．NAS 1－5293 by
THE BOEING COMPANY
Seattle，Wash．
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield，Virginia 22151 －CFSTI price $\$ 3.00$

Abstract

An IBM 7094 digital computer program using the steepest as cent technique has been developed for optimizing the flight path of a supersonic transport aircraft from the start of climb through cruise and descent. The program is sufficiently versatile so that other vehicles besides the SST may have their flight paths optimized. These vehicles include: space boosters, ICBM's, reentry vehicles, scramjets, and vehicles with air-augmented rocket propulsion.

The program incorporates a 3-D point mass simulation of a vehicle moving in relation to a spherical, rotating earth. The inverse-square law for gravity and 1962 U. S. standard atmosphere are used.

The optimization is accomplished with an automatic step-size controller and with automatic control variable weighting matrices to allow problem solution in a single computer run. Automatic plotting capability is included. Multistaged vehicles and problems involving variable initial conditions may be optimized.

Pitch angle, bank angle, wing sweep, and throttle setting are the control variables for the program. Inequality constraints are available on all control variables as well as on parameters affecting geopolitics, passenger comfort, structural loads, and engine operation. The geopolitical constraints include sonic boom overpressure and maximum and minimum altitude.

FOREWORD

This report was prepared by the Missile and Information Systems Division of The Boeing Company, Seattle, Washington. It presents the final documentation of the analytical development and user's manual for the Supersonic Transport Optimization Program (STOP). The program was developed by Boeing for the Langley Research Center under contract NAS 1-5293. The contract was administered by the National Aeronautics and Space Adminstration under the direction of Mr. J. R. Elliott, with Mr. David F. Thomas, Jr. acting as contract monitor.

The Supersonic Transport Optimization Program was obtained from the NASA Request for Proposal L-5347. Development of the program began in August 1965 and was completed in September 1966. Dr. L. H. Stein was responsible for program development. The closed loop guidance techniques and the control formulation were developed by Mr. M. L. Matthews. Mr. Matthews also assisted in a major part of the program development as well as in the solution of the twenty check cases. Mr. J. W. Frenk was in charge of programming and was assisted by Mr. D. A. Watson. Mr. Watson was also responsible for the plotting capability for the program. The work was performed under the direction of Mr. E. G. Haugseth of the Boeing Missile and Information Systems Division.

This report, together with a companion document, Supersonic Transport Trajectory Optimization - Example Solutions (NASA Contractor Report No. 66247) plus the FORTRAN source program listings, binary object deck, and symbolic object deck concludes the work prescribed under contract NAS 1-5293.
SUMMARY 1
INTRODUCTION 4
SYMBOLS 5
ANALYTICAL DEVELOPMENT 10
Equations of Motion 10
Coordinate System 10
Control Variables 10
Kinematic Equations 12
Applied Forces 13
Basic Equations of Motion 18
Auxiliary State Variables 19
Inequality Constraints 20
Steepest-Ascent Technique 25
Statement of Problem 25
Adjoint Equations 26
Variational Equations 30
Automatic Convergence 34
Iterative Procedure 34
Variable Initial Conditions 37
Weighting Functions Matrix 39
Nominal Trajectory Generation 42
Angle of Attack from Known $\dot{\boldsymbol{\gamma}}$ 43
Angle of Attack for a Known $\dot{\mathbf{V}}$ 44
Throttling for a Known Vं 45
Guidance Modes 45
Use of Guidance Options 47
Additional Options 48
Gamma Tilt 48
Circular Satellite 48
Maximum Payload 49
Conclusions and Recommendations 49
PROGRAM USER'S MANUAL 50
Program Assumptions and Limitations 50
Assumptions 50
Limitations 51

CONTENTS (Cont.)

Page
Input Data Preparation 52
PROGRAM OPERATION 77
Nomenclature - FORTRAN COMMON 77
Output Description 92
Printed Output 92
Punched Card Output 97
Magnetic Tape Output 100
Sample Problem 102
Statement of Problem 102
Sample Input 103
Sample Output 103
Operating Information 114
Program Setup 114
Data Setup 116
General Machine Operation 116
Tape or Disk Requirements 116
End-of-Run Indication 116
Special Machine Operating Information 119
Programming Information 122
Basic Program Flow 122
Subroutine Descriptions and Flow Diagrams 127
Program Flexibility 279
Program and Data Overlay 284
Equivalence 287
Trouble Shooting 287
Plotting Information 297
Limitations 297
Input Controls Required for Plotting 297
Multiple-Curve Identification 298
REFERENCES 299
APPENDIX A - Control Variable Choice for Point Mass Equations of Motion 300

CONTENTS (Cont.)

Page
APPENDIX B - Program Equations, Variables, and Constants Defined 305
Equations of Motion 305
Partial Derivatives 306
Auxiliary Printout Variables 313
VAR Array 314
CONST Array 316
Miscellaneous COMMON 317
Internal Program Indicators 319
APPENDIX C—Program Control Logic 322

STOP-A COMPUTER PROGRAM FOR
 SUPERSONIC TRANSPORT TRAJECTORY OPTIMIZATION

By Lawrence H. Stein, Malcolm L. Matthews, and Joel W. Frenk Boeing Aerospace Group

SUMMARY

An IBM 7094 digital computer program using a steepest-ascent procedure has been developed for optimizing the flight path of supersonic transport aircraft from the start of climb through cruise and descent. This document describes the analytical development of the supersonic transport optimization program (STOP) and presents a manual for program users.

Program capability is summarized below.

1. The program is capable of optimizing the entire flight of an SST from a given low-speed, low-altitude condition at the start of the flight to a given low-speed, low-altitude condition at the end of the flight. The program will also optimize the climb, cruise, and descent phases of a mission separately.
2. The program incorporates a 3-D point-mass simulation for a vehicle moving in relation to a spherical, rotating earth. The inverse-square law for gravity is used. The 1962 U.S. standard atmosphere is included as a single subroutine.
3. The optimization is accomplished with an automatic step-size controller so that, in general, only one pass on the computer is required for a solution. The program will generate a nominal trajectory for starting the iterative procedure. Automatic plotting capability is included. STOP is sufficiently versatile so that other vehicles besides the SST may have their flight paths optimized. These vehicles include: space boosters, ICBM's, reentry vehicles, scramjets, and vehicles with air-augmented propulsion. Even problems completely divorced from flight path optimization may be solved with a minimum of reprogramming.
4. Payoff functions, terminal constraints, and stopping parameters may be selected from the list of 40 state variables (defined by equations of motion and enroute placards) given in figure 1. The program will optimize any one of the state variables while simultaneously satisfying 14 terminal constraints (one of which is considered to be the stopping condition). Inequality constraints, imposed by the user, are considered as terminal constraints.
5. Pitch angle, bank angle, wing sweep, and throttle setting are the control variables for the program. The user may select any subset of these variables for a given problem.

VARIABLE TYPE	VARIABLE INDEX	NC INDEX	PLOT INDEX	FORTRAN NAME	SYMBOL	DESCRIPTION	UNITS
STATE	1	121	1	X(K])	W	WEIGHT	LB
(EQUATION	2	122	2	X(K2)	H	Altitude	FT
OF MOTION)	3	123	3	X(K3)	γ	RELATIVE FLIGHT PATH ANGLE	DEG
	4	124	4	X(K4)	V	Relative velocity	FPS
	5	125	5	X(K5)	β	LATITUDE ANGLE	DEG
	6	126	6	X(K6)	ψR	RELATIVE HEADING ANGLE	DEG
	7	127	7	X(K7)	λ	LONGITUDE ANGLE	DEG
	8	128	8	X(K8)	TD	DUMMY TIME	SEC
	9	129	9	X(K9)	RNG	PATH RANGE ALONG EARTH'S SURFACE	N Ml
	10	130	10	X(K10)	AHI	AERODYNAMIC HEATING INTEGRAL	FT-LB/FT ${ }^{2}$
	11	131	11	X(K11)	ΔV	IDEAL RELATIVE delta velocity	FPS
	12	132	12	X(K12)	GL	GRAVITY LOSS	FPS
	13	133	13	X(K13)	DL	dRAG LOSS	FPS
	14	134	14	X(K14)	TVL	THRUST VECTORING LOSS	FPS
	15	135	15	X(K15)	ER	RELATIVE SPECIFIC ENERGY	FT
	16	136	16	X(K16)			
	17	137 138	17	X(K17)		AVAILABLE FOR EXPANSION	
	18	138 139	18	X(K18) X(K19) ($\} \begin{aligned} & \text { AVAILABLE FOR EXPANSION } \\ & \text { NOT DEFINED }\end{aligned}$	
	19	139 140	19	X K 1919 X(K20)		\} NOT DEFINED	
STATE	21	141	21	X(K2])	$\theta *$	PITCH ANGLE PLACARD $=\mathrm{F}(\mathrm{t})$	2
(ENROUTE	22	142	22	X(Kı2)	ϕ^{*}	BANK ANGLE PLACARD $=F(t)$	${ }^{D E G}{ }^{2}$ SEC
PLACARD)	23	143	23	X(K23)	$\eta *$	THROTTLE PLACARD $=F(H, M)$	SEC
	24	144	24	X(K24)	Λ^{*}	WING SWEEP PLACARD $=F(H, M)$	DEG2SEC
	25	145	25	X(K25)	$\alpha *$	ANGLE OF ATTACK PLACARD = F(H,M)	DEG ${ }^{2}$ SEC
	26	146	26	X(K261		NOT DEFINED	
	27	147	27	X(K27)	HD^{*}	ALTITUDE RATE PLACARD $=$ Fft	FPS
	28	148	28	X(K28)	Q ${ }^{\text {a }}$	DYNAMIC PRESSURE PLACARD $=F(t)$	$(\mathrm{PSF})^{2} \mathrm{SEC}$
	29	149	29	X(K29)	Q*	DYNAMIC PRESSURE PLACARD * F(M)	(PSF) ${ }^{2}$ SEC
	30	150	30	X(K30)	Q α^{*}	Q P PLACARD = F(M)	(PSF-DEG) ${ }^{2}$ SEC
	31	151	31	X(K31)	TEMT*	TOTAL TEMPERATURE PLACARD $=F(t)$	$\left.{ }^{\circ} \mathrm{R}\right)^{2} \mathrm{SEC}$
	32	152	32	X(K32)	N^{*}	NORMAL LOAD FACTOR PLACARD - F(H,M)	SEC ${ }^{2}{ }^{2}$
	33	153	33	X(K33)	RPA ${ }^{\circ}$	RESULTANT PHYSIOLOGICAL ACCEL. PLACARD = F(t)	$(F T / S E C)^{2}$ SEC
	34	154	34	X(K34)		ALTITUDE PLACARD - FIM)	$F^{2} S E C$
	35	155	35	X(K35)	Δp^{*}	SONIC BOOM OVERPRESSURE PLACARD $=F(\lambda, \beta)$	(PSF) ${ }^{\text {2SEC }}$
	36	156	36	X(K36)	$M^{\text {a }}$	MACH NUMBER PLACARD $=F(H)$	SEC
	37	157	37	X(K37)		NOT DEFINED	
	38 39	158 159	38 39		γ°	GAMMA PLACARD $=\mathrm{F}(\mathrm{H}, \mathrm{M})$	DEG ${ }^{2} \mathrm{SEC}$
2.	39 40	169	40	X(K38) $\times(\mathrm{K} 40)$		NOT DEFINED	

FIGURE 1: STATE VARIABLES
6. Aerodynamic and engine options are available for receiving the data in the forms commonly used for most types of vehicles.
7. Multistaged vehicles and those where external stores are jettisoned as a function of time may be optimized.
8. Inequality constraints may be imposed on parameters affecting geopolitics, passenger comfort, control limitations, structural loads, and engine operation. The geopolitical constraints include sonic boom overpressure and maximum and minimum altitude.
9. The initial conditions can be varied by the program to obtain increased performance. This option eliminates the need for a preliminary search to determine the neighborhood of initial conditions for an optimal flight path.

INTRODUCTION

The need to optimize transport aircraft flight paths is becoming apparent because (1) the next generation will include supersonic transports for which the climb and acceleration phase consumes an appreciable part of the vehicle fuel, and (2) a large part of the flight is constrained by enroute placards.

The steepest-ascent method has been successfully used to optimize rocketboost trajectories, reentry-vehicle trajectories, and orbital transfers giving substantial performance gains. There have been numerous attempts to optimize flight paths of airbreathing interceptor-type aircraft with a relatively high thrust-to-weight ratio using the steepest-ascent technique (ref. 1). These methods have been successful to a degree, but, when applied to low-thrust-to-weight-ratio aircraft, have resulted in flight path instability problems that have made convergence difficult.

Recognizing that, in the past, optimization techniques have produced significant performance gains for many classes of vehicles, NASA initiated the present study under RFP L-5347 (ref. 2). The purpose of the study was development of a digital computer program that would optimize the flight path of a supersonic transport with realistic operational constraints. A sufficient number of cases would be run to substantiate the program and define the most appropriate flight paths for selected SST configurations. A computer program general enough to optimize the SST would have the capability to optimize trajectories for many classes of vehicles including rockets, air-augmented rockets, airbreather vehicles, and gliders.

The technique used for optimization is the steepest-ascent method given by Bryson (ref. 1), which follows the direct approach of determining a maximum. The optimum flight path for the present study is the solution to the nonlinear differential equations of motion that satisfy the imposed constraints and maximizes or minimizes one of the state variables.

The development of a computer program to satisfy the SST requirements and overcome problems associated with the flight path instabilities and complex engine characteristics required some changes in the usual methods used in optimization programs. Significant contributions to the program were made by NASA/LRC personnel. The use of pitch angle as a control variable was suggested by J. R. Elliott as a technique to overcome the flight path instabilities. The formulation of jet engine data into a form compatible with the optimization procedure was suggested by W. E. Foss, Jr. This form of data uses thrust input as T/P and weight flow as \dot{W} / P, where P is the ambient atmospheric pressure. Contribution to the form of the SST aerodynamic data representation was made by C. M. Jackson, Jr.

A	axial force (pounds)
a	speed of sound (feet/second)
$\overline{\mathrm{a}}$	inertial acceleration vector (feet/second ${ }^{2}$)
A ($t-\tau)$	indicial response at time t due to a unit step in $f(t)$ at time τ (see Duhamel's integral, equation 81)
A_{e}	nozzle exit area (square inches)
AHI	aerodynamic heating integral (foot-pounds/feet ${ }^{2}$)
a_{n}	component of acceleration normal to relative velocity vector
a_{t}	component of acceleration along the velocity vector
${ }^{\text {app }}$	component of acceleration completing the right-hand set $\left(a_{n}, a_{t}, a_{p}\right)=\bar{a}$
C_{A}	axial force coefficient, A / q S
C_{D}	drag force coefficient, D/q S
CD_{0}	minimum drag force coefficient
C_{L}	lift force coefficient, $\mathrm{L} / \mathrm{q} \mathrm{S}$
$\mathrm{C}_{L_{\alpha}}$	$\partial C_{L} / \partial \alpha$ (per degree)
$\mathrm{C}_{L_{\alpha=0}}$	lift force coefficient at $\alpha=0$
${ }^{C} L_{\text {M }}$	lift force coefficient for minimum drag
C_{N}	normal force coefficient, $\mathrm{N} / \mathrm{q} \mathrm{S}$
$\mathrm{C}_{\mathrm{N}_{\alpha}}$	$\partial \mathrm{C}_{\mathrm{N}} / \partial \alpha$ (per degree)
$\mathrm{C}_{\mathrm{N}_{\alpha}}{ }^{\text {a }}$	$\partial \mathrm{C}_{\mathrm{N}} / \partial \alpha^{3}$ (per degree ${ }^{3}$)
C_{T}	thrust force coefficient, T/q (square feet)
D	drag force (pounds)
$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}$	drag constants (defined by equation 151)
DL	velocity loss caused by drag forces (feet/second)
$(\mathrm{dU})^{2}$	control variable perturbation magnitude (see equation 100)
df	predicted change in a function f (see fig. 8)
df_{0}	trial value for df
df*	actual change in a function f (see fig. 8)
$\underline{d f}{ }_{0}{ }^{*}$	trial value for df*

$\mathrm{d} \bar{\beta}$
$d \omega, d \bar{\psi}, d \Omega$
$d \omega_{0}, d \bar{\psi}_{o}$
$F, F(t)$
$f, f(X(t), \bar{u}(t), t)$
f_{NL}
$\mathrm{f}(\mathrm{t})$
$G, G(t)$
g
$\mathrm{g}(\mathrm{t})$
go
GL
GF
h
$\mathrm{h}_{\mathrm{ref}}$
h $(t-\tau)$
$I_{s p}$
$\mathrm{I}_{\varphi \varphi}, \mathrm{I}_{\psi \varphi}, \mathrm{I}_{\psi \psi}$
k
K_{m}
K_{R}
K_{T}
L

M
m
combined changes in the constraints and initial state variables change in payoff, constraint, and stopping functions trial values for $\mathrm{d} \varphi$ and $\mathrm{d} \bar{\psi}$
$\mathrm{n} \times \mathrm{n}$ matrix of partial derivatives, $\partial \mathrm{f}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}}$
an $\mathrm{n} \times 1$ matrix of functions defining the time derivatives of the state variables
a value determining the degree of nonlinearity of the function f
forcing function of Duhamel's integral (see equation 81)
$\mathrm{n} \times \mathrm{m}$ matrix of partial derivatives, $\partial \mathrm{f}_{\mathrm{i}} / \partial \mathrm{u}_{\mathrm{j}}$
local acceleration of gravity (feet/second)
forcing function of the convolution integral (see equation 99) gravitational acceleration at earth's surface (feet/second ${ }^{2}$) velocity loss due to earth's gravitational field (feet/second) function defined by equation 140 altitude above earth's surface (feet) reference altitude used for skin friction drag calculations (feet) response of a system at time t, due to a unit control variable impulse at time τ (see convolution integral, equation 99) specific impulse, T / \dot{W} (pounds thrust/pounds fuel per second) integrals defined by equations $108 \mathrm{~b}, \mathrm{c}$, and d step size coefficient (see fig. 8)
fuel flow correction factor for rockets constant used in sonic boom calculations total impulse correction factor for rockets lift force (pounds); reference length for sonic boom calculations

Mach number
number of control variables
force normal to body axis (pounds)
number of state variables plus enroute placards number of terminal and enroute constraints sonic boom overpressure (pounds $/$ feet ${ }^{2}$)

$\mathrm{P}, \mathrm{P}_{\infty}$	ambient pressure (pounds/feet ${ }^{2}$)
$P_{\text {ref }}$	$\sqrt{\mathrm{P}_{\mathrm{SL}} \mathrm{P}_{\infty}}$ (pounds/feet ${ }^{2}$)
$\mathrm{P}_{\text {SL }}$	sea-level ambient pressure (pounds $/ \mathrm{feet}^{2}$)
q	dynamic pressure, $1 / 2 \rho \mathrm{~V}^{2}$ (pounds/feet ${ }^{2}$)
$\mathrm{q} \alpha$	dynamic pressure times angle of attack (pounds-degree/feet ${ }^{2}$)
r	position vector measured from earth's center to vehicle (feet)
r_{D}	desired final altitude for circular orbit (feet)
RPA	resultant physiological acceleration (feet/second ${ }^{2}$)
R_{O}	radius of a spherical earth (feet)
S	aerodynamic reference area (square feet)
S_{u}^{*}	integrated payoff function sensitivities (see equation 134)
s_{u}^{0}	instantaneous payoff function sensitivities (see equation 130)
SFC	specific fuel consumption (pounds fuel per hour/pounds thrust)
T	actual thrusi component along body axis (pounds); static temperature (degrees Rankine); final trajectory time (seconds)
t	independent trajectory variable, time (seconds)
t_{o}	initial trajectory time (seconds)
${ }^{\text {b }}$	dummy time (seconds)
Tref	uncorrected thrust as input for airbreathers (pounds)
T_{T}	total corrected thrust for rockets (pounds)
$\mathrm{T}_{\text {total }}$	total temperature (degrees Rankine)
$\mathrm{T}_{\text {vac }}$	uncorrected vacuum thrust as input for rockets (pounds)
TVL	velocity loss caused by thrust vectoring (feet/second)
$\bar{u}, \bar{u}(t)$	an m x 1 matrix of control variables
$\overline{\mathrm{V}}, \overline{\mathrm{V}}_{\mathrm{I}}$	inertial velocity vector (feet/second)
$\mathrm{V}_{\text {cs }}$	circular satellite velocity (feet/second)
$\overline{\mathrm{V}}_{\mathrm{R}}$	relative velocity vector (feet/second)
VF	function defined by equation 150
W	weight (pounds); an $\mathrm{m} \times \mathrm{m}$ weighting matrix
$\mathrm{w}_{\text {ii }}$	elements of the weighting matrix W (equation 137)
W_{f}	fuel weight (pounds)

x	path range (feet)
x, y	coordinates of points on the forward shock signature (see fig. 7)
$\overline{\mathrm{x}}, \mathrm{x}(\mathrm{t})$	an $\mathrm{n} \times 1$ matrix of state variables and enroute placards
y_{c}	lateral extent of forward shock signature (see fig. 7)
${ }^{\alpha}$	angle of attack (degrees)
α_{0}	angle of attack of the previous integration step (degrees)
β	latitude of vehicle (degrees)
β_{G}	latitude at which the overpressure intersects the ground (degrees) (see fig. 7)
$\beta_{\text {local }}$	latitude of a point on the forward shock signature (see fig. 7)
β_{m}	$\sqrt{M^{2}-1}$
γ	flight path angle (degrees); specific heat ratio
δ	Kronecker delta; indicates variance
$\delta_{\text {c }}$	thrust cant angle (degrees)
η	throttling control variable
θ	pitch angle; control variable, $\gamma+\alpha$ (degrees)
Λ	sweepback control variable (degrees)
λ	longitude of vehicle (degrees)
$\lambda, \lambda(t)$	adjoint variables
λ_{G}	longitude at which the overpressure intersects the ground (see fig. 7)
$\lambda_{\text {local }}$	longitude of a point on the forward shock signature (see fig. 7)
$\lambda_{\varphi}, \lambda_{\varphi}(\mathrm{t})$	payoff function adjoint variables, measures sensitivity of ω at time T , to state variable changes at time t
$\lambda_{\psi}, \lambda_{\psi}(\mathrm{t})$	constraint function adjoint variables, measures sensitivity of a constraint at time T, to state variable changes at time t
$\lambda_{\Omega}, \lambda_{\Omega}{ }^{(t)}$	stopping function adjoint variables, measures sensitivity of the stopping function at time T, to state variable changes at time t
$\lambda_{\varphi \Omega}, \lambda_{\psi \Omega}$	see equations 98a and b
μ, μ_{S}	Lagrange multiplier (see equation 112); first Lagrange multiplier (see equation 113)

$\bar{\nu}, \bar{\nu}_{\mathrm{s}}$
ρ
τ
φ
ψ
$\bar{\psi}$
Ω
ω

Subscripts

R
I
\max
req
vac
ref
∞

Superscripts
()$^{\prime}$
()$^{-1}$
()
a $1 \times p$ matrix of Lagrange multipliers (see equations 108 and 114)
ambient density (slugs/foot ${ }^{3}$)
dummy time used in Duhamel's and the convolution integral
payoff function; bank angle (degrees)
heading angle, measured in degrees north of east
a $\mathrm{p} \times 1$ constraint vector
stopping function
angular velocity of earth (radians/second)
sea level or earth surface; initial; variable based on the angle of attack of the previous integration step and current state variables
refers to relative coordinate system
refers to inertial coordinate system
maximum
required
vacuum
reference
ambient condition
transpose of a matrix ()
inverse of a matrix ()
indicates nominal value

Equations of Motion

Coordinate system. - The flight-path coordinate system is used to define the vehicle position and attitude with respect to a spherical, rotating earth. This system is sometimes regarded as the "natural" coordinate system because the state variables of flight-path angle and velocity are explicit coordinates. The basic state variable coordinates are longitude (λ), latitude (β), altitude (h), relative velocity (V_{R}), relative flight-path angle (γ_{R}), and relative heading angle (ψ_{R}) (fig. 2).

Control variables. - The total force acting on the vehicle has three distinct sources: (1) gravitational force as a result of mutual mass attraction between the vehicle and earth; (2) aerodynamic force resulting from the vehicle motion through the atmosphere; and (3) thrust force from the vehicle propulsion system. There is no way of controlling the gravitational force since it is a function only of the state of the system.

The aerodynamic forces are determined by the geometry of the vehicle and its attitude with respect to the free-stream air mass. For fixed-geometry aircraft, the aerodynamic force is dependent on the angle of attack (defined as the angle between the vehicle longitudinal axis and the velocity vector). The angle of attack is used primarily to establish lift that is normally in a vertical plane. Out-ofplane maneuvers are made by banking the vehicle to direct the lift vector out of the vertical plane, thus permitting lateral translations. The bank angle, φ, is defined as the angle between the vertical plane containing the velocity vector and the vehicle plane of symmetry as viewed along the velocity vector (fig. 3).

A problem exists with angle of attack as a control variable for the point mass equations of motion when simulating the flight of a low thrust/weight, winged, airbreathing vehicle. The angle-of-attack control variable has been satisfactorily used for high thrust/weight vehicles, but the use of angle of attack for SST-type vehicles results in an unstable, oscillatory flight path during cruise which is not representative of the actual path. The use of a pitch angle (θ) given by

$$
\begin{equation*}
\theta=\gamma+\alpha \tag{1}
\end{equation*}
$$

as a control variable resolves the problem and results in a stable, well behaved flight path in all cases checked. The analysis of this problem is given in appendix A. Note that if the vehicle is banked, θ is not the pitch angle in the usual sense (that is, the angle between the longitudinal axis and horizontal plane), but instead is the algebraic sum of the flight-path angle and the angle of attack as given by equation 1. Therefore, for nonzero bank, θ is not a physical angle.

Since some of the more advanced aircraft permit changing vehicle geometry by varying the wing sweep, the effect of this variable must be considered in

Figure 2. BASIC COORDINATE SYSTEM

Figure 3. VEHICLE ORIENTATION
establishing the aerodynamic force on the vehicle. The wing sweep, Λ, is defined as the angle between the lateral body axis and a reference line on the wing (e.g., leading edge, quarter chord, and half chord).

The remaining control variable to be considered is the throttle setting, η, for controlling the thrust. This parameter is defined as the ratio of thrust at a given state to the reference thrust at that same state. Thrust is considered to act along the vehicle body axis.

Therefore, to determine the aerodynamic and thrust forces required for controlling the vehicle, four control variables are required: θ, φ, Λ, and η.

Kinematic equations. - The basic state equations of motion are defined in this section. Details of the development are not given here because the methods are standard.

The kinematics of a point mass vehicle for a rotating, central-force field is given by

$$
\begin{align*}
& \overline{\mathrm{V}}=\overline{\mathrm{V}}_{\mathrm{R}}+\bar{\omega} x \overline{\mathrm{r}} \tag{2}\\
& \overline{\mathrm{a}}=\frac{\mathrm{d} \overline{\mathrm{~V}}}{\mathrm{dt}}+\bar{\omega} x \overline{\mathrm{~V}} \tag{3}
\end{align*}
$$

where $\quad \overline{\mathrm{V}}$ is the inertial velocity vector
$\overline{\mathrm{V}}_{\mathrm{R}}$ is the relative velocity vector
$\bar{\omega}$ is the earth's rotation rate \bar{r} is the position vector of the vehicle $\overline{\mathrm{a}}$ is the inertial acceleration vector.

Substituting equation 2 into equation 3 gives

$$
\begin{equation*}
\overline{\mathrm{a}}=\frac{\mathrm{d} \overline{\mathrm{~V}}_{\mathrm{R}}}{\mathrm{dt}}+2 \bar{\omega} \times \overline{\mathrm{V}}_{\mathrm{R}}+\bar{\omega} \times(\bar{\omega} \times \overline{\mathrm{r}}) \tag{4}
\end{equation*}
$$

Using the coordinate system of figure 2, equation 4 can be written in components along the flight path, normal to the flight path in the plane containing the $\overline{\mathrm{r}}$ and the $\overline{\mathrm{V}}$ vector, and perpendicular to the plane containing $\overline{\mathrm{r}}$ and $\overline{\mathrm{V}}$.
$a_{t}=\dot{\mathrm{V}}_{\mathrm{R}}+\omega^{2} \mathrm{r} \cos \beta\left(\sin \beta \cos \gamma_{R} \sin \psi_{R}-\cos \beta \sin \gamma_{R}\right)$ $a_{n}=V_{R} \dot{\gamma}_{R}-\frac{\mathrm{V}_{\mathrm{R}}{ }^{2}}{\mathrm{r}} \cos \gamma_{\mathrm{R}}-2 \omega \mathrm{~V}_{\mathrm{R}} \cos \beta \cos \psi_{\mathrm{R}}$
$-\omega^{2} r \cos \beta\left(\cos \beta \cos \gamma_{R}+\sin \beta \sin \gamma_{R} \sin \psi_{R}\right)$ $a_{p}=V_{R} \cos \gamma_{R} \dot{\psi}_{R}+\frac{V_{R}{ }^{2}}{r} \tan \beta \cos ^{2} \gamma_{R} \cos \psi_{R}$
$-2 \omega V_{R}\left(\sin \gamma_{R} \sin \psi_{R} \cos \beta-\sin \beta \cos \gamma_{R}\right)$
$+\omega^{2} r \sin \beta \cos \beta \cos \psi_{R}$
where $\quad \gamma_{R}$ is the relative flight-path angle ψ_{R} is the relative heading measured north of east.

Other equations which follow from the procedures are

$$
\begin{align*}
& \dot{\beta}=\frac{V_{R} \cos \gamma_{R} \sin \psi_{R}}{r} \\
& \dot{\lambda}=\frac{V_{R} \cos \gamma_{R} \cos \psi_{R}}{r \cos \beta} \tag{6}\\
& \dot{\mathrm{~h}}=\mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} \\
& \dot{\mathrm{x}}=\mathrm{V}_{\mathrm{R}} \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{r}} \cos \gamma_{\mathrm{R}}
\end{align*}
$$

where $\quad \lambda$ is the longitude angle
h is the altitude
x is the path range.
The change in weight of the vehicle is given by the differential equation

$$
\begin{equation*}
\dot{\mathrm{w}}=- \text { weight flow } \tag{7}
\end{equation*}
$$

where the weight flow is a combination of fuel flow and inerts.
The gravitational, aerodynamic, and thrust forces are required to complete the system. Other "auxiliary" state variables that are required will be defined in a later section.

Applied forces. - The forces acting on the vehicle which are not a result of the vehicle kinematics are discussed in this section.

Gravitational forces: The gravitational forces are determined for the central force field by representing the gravitational acceleration by the inverse square law

$$
\begin{equation*}
\mathrm{g}=\frac{\mu}{\mathrm{r}^{2}}=\mathrm{g}_{\mathrm{o}}\left(\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{r}}\right)^{2} \tag{8}
\end{equation*}
$$

Aerodynamic forces: The aerodynamic forces for aircraft are written for the wind axes system with lift (L) normal to the flight path and drag (D) parallel to the flight path. Side-slip is assumed to be zero, i.e., all turns are assumed to be coordinated such that no side-slip results.

Figure 4. AERODYNAMIC FORCES - WIND AXES

If the bank angle is not zero, the lift vector is rotated about the velocity vector through the angle φ (bank angle).

The aerodynamic forces may be expressed as

$$
\begin{align*}
& L=C_{L} q S \tag{9}\\
& D=C_{D} q S \tag{10}
\end{align*}
$$

where
L is the lift force
D is the drag force
C_{L} is the lift coefficient
C_{D} is the drag coefficient
q is the dynamic pressure $=\frac{1}{2} \rho \mathrm{~V}^{2}$ or $\frac{\gamma \mathrm{P}_{\infty}}{2} \mathrm{M}^{2}$
S is the reference area.
Aerodynamic data input options are available for accepting data in the most common forms. For vehicles with fixed wings, the data are considered as

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}}=\mathrm{f}(\mathrm{~h}, \mathrm{M}, \alpha) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}}=\mathrm{f}(\mathrm{~h}, \mathrm{M}, \alpha) \tag{12}
\end{equation*}
$$

if not represented in polar form. If available as drag polars, the data are represented as

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}_{\alpha}} \alpha \tag{13}\\
& \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}_{0}}+\frac{\partial \mathrm{C}_{\mathrm{D}}}{\partial \mathrm{C}_{\mathrm{L}}^{2}} \mathrm{C}_{\mathrm{L}^{2}}{ }^{2} \tag{14}
\end{align*}
$$

where $\quad C_{L_{\alpha}}=$ lift curve slope, $f(M)$ per degree

$$
\mathrm{C}_{\mathrm{D}_{0}}=\text { minimum drag coefficient, } \mathrm{f}(\mathrm{M})
$$

$$
\frac{\partial C_{D}}{\partial C_{L}^{2}}=\text { induced drag constant, } f(\mathrm{M})
$$

The aerodynamics for variable-geometry aircraft with wing sweep as a control variable are formulated as

$$
\begin{align*}
& C_{L}=f(\Lambda, M, \alpha) \tag{15}\\
& C_{D}=f(\Lambda, M, \alpha) \tag{16}
\end{align*}
$$

or if the data are given as drag polars

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}_{\alpha=0}}+\mathrm{C}_{\mathrm{L}_{\alpha}} \alpha \tag{17}\\
& \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}_{0}}+\frac{\partial \mathrm{C}_{\mathrm{D}}}{\boldsymbol{\theta C}_{\mathrm{D}}^{2}}\left(\mathrm{C}_{\mathrm{L}}-\mathrm{C}_{\mathrm{L}_{\mathrm{M}}}\right)^{2} \tag{18}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{L}_{\alpha=0}} & =\text { lift coefficient for } \alpha=0, \mathrm{f}(\Lambda, \mathrm{M}) \\
\mathrm{C}_{\mathrm{L}_{\alpha}} & =\text { lift curve slope, } \mathrm{f}(\Lambda, \mathrm{M}) \text { per degree } \\
\mathrm{C}_{\mathrm{D}_{0}} & =\text { minimum drag coefficient, f }(\Lambda, \mathrm{M}) \\
\frac{\partial \mathrm{C}_{\mathrm{D}}}{\partial \mathrm{C}_{\mathrm{L}}{ }^{2}} & =\text { induced drag constant, f }(\Lambda, \mathrm{M}) \\
\mathrm{C}_{\mathrm{L}_{\mathrm{M}}} & =\text { lift coefficient for minimum drag, f }(\Lambda, \mathrm{M}) .
\end{aligned}
$$

The effect of altitude on drag (skin friction, $\Delta \mathrm{C}_{\mathrm{D}_{0}}$) is included as a linear function of altitude,

$$
\begin{equation*}
\Delta \mathrm{C}_{\mathrm{D}_{0}}=\frac{\Delta \mathrm{C}_{\mathrm{D}}}{\Delta \mathrm{~h}}\left(\mathrm{~h}-\mathrm{h}_{\mathrm{ref}}\right) \tag{19}
\end{equation*}
$$

where
$\Delta C_{D} / \Delta h$ is a function of the reference altitude.

The aerodynamic forces on a missile are quite often referenced to the body axis with the normal force perpendicular to the body axis and the axial force along the body axis.

$$
\begin{align*}
& \mathrm{N}=\mathrm{C}_{\mathrm{N}} \mathrm{q} \mathrm{~S} \tag{20}\\
& \mathrm{~A}=\mathrm{C}_{\mathrm{A}} \mathrm{q} \mathrm{~S} \tag{21}
\end{align*}
$$

where $\quad N$ is the normal force
A is the axial force
C_{N} is normal force coefficient
C_{A} is axial force coefficient.

FIGURE 5. AERODYNAMIC FORCES - BODY AXES

The normal and axial force coefficients are given by

$$
\begin{align*}
& \mathrm{C}_{\mathrm{N}}=\mathrm{C}_{\mathrm{N}_{\alpha}} \alpha+\mathrm{C}_{\mathrm{N}_{\alpha}} \alpha^{3} \tag{22}\\
& \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A}_{0}} \text { (not dependent on } \alpha \text {) } \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{N}_{\alpha}} & =\mathrm{f}(\mathrm{M}) \text { per degree } \\
\mathrm{C}_{\mathrm{N}_{\alpha}} & =\mathrm{f}(\mathrm{M}) \text { per degree } \\
\mathrm{C}_{\mathrm{A}_{0}} & =\mathrm{f}(\mathrm{M}) .
\end{aligned}
$$

The forces in the body axis system are transformed to the wind axis by

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{N}} \cos \alpha-\mathrm{C}_{\mathrm{A}} \sin \alpha \tag{24}\\
& \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{N}} \sin \alpha+\mathrm{C}_{\mathrm{A}} \cos \alpha \tag{25}
\end{align*}
$$

for use in the program.

Thrust forces: The thrust forces on a vehicle are considered to act in a direction fixed relative to the body axis so that the resultant thrust along the body axis is

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{\mathrm{T}} \cos \delta_{\mathrm{c}} \tag{26}
\end{equation*}
$$

where

$$
\mathrm{T} \text { is the thrust along body axis }
$$

T_{T} is the total thrust force
δ_{c} is the thrust cant angle.
(The angle δ_{c} is used only for symmetric nozzle configurations where the normal thrust component from two opposing engines cancel.)

$\frac{T_{t}}{2}$ Figure 6. THRUST REPRESENTATION

The computation of thrust for airbreathing engines follows the form

$$
\begin{equation*}
\mathrm{T}_{\mathrm{T}}=\mathrm{T}_{\mathrm{ref}} \eta \tag{27}
\end{equation*}
$$

where $\quad T_{\text {ref }}$ is the reference thrust $=\mathrm{F}(\alpha, \mathrm{h}, \mathrm{M}$, or V$)$
η is the throttling parameter.
The thrust may also be given by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ref}}=\mathrm{C}_{\mathrm{T}} \mathrm{q} \tag{28}
\end{equation*}
$$

where $\quad \mathrm{C}_{\mathrm{T}}$ is thrust coefficient. $=\mathrm{F}(\alpha, \mathrm{h}, \mathrm{M}$, or V$)$
A thrust option that has particular use for the jet engine is

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{ref}}}{\mathrm{P}}=\mathrm{f}(\alpha, \mathrm{~h}, \mathrm{M}) \tag{29}
\end{equation*}
$$

which was formulated to give a smooth, consistent set of data over the entire operating range of the engine. P is the atmospheric pressure (psf).

The reference thrust for rocket engines is based on vacuum conditions. The total thrust is given by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}} \mathrm{~T}_{\mathrm{vac}} \eta-\mathrm{P}_{\infty} \mathrm{A}_{\mathrm{e}} / 144 \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{vac}} \text { is the vacuum thrust (pounds), } \mathrm{f} \text { (time) } \\
& \mathrm{P}_{\infty} \text { is atmospheric ambient pressure (psf) } \\
& \mathrm{A}_{\mathrm{e}} \text { is the exit area (square inches), } \mathrm{f} \text { (time) } \\
& \mathrm{K}_{\mathrm{T}} \text { is the total impulse correction factor. }
\end{aligned}
$$

Fucl flow: The fucl flow for airbreathing engines can be specified in terms of fuel flow directly or in terms of thrust specific fuel consumption.

$$
\begin{equation*}
\dot{\mathrm{w}}_{\mathrm{f}}=\frac{\mathrm{SFC}}{3600} \times \mathrm{T}_{\mathrm{ref}} \tag{31}
\end{equation*}
$$

The fuel flow and specific fuel consumption can be expressed as

$$
\begin{align*}
\dot{\mathrm{W}}_{\mathrm{f}}, \mathrm{SFC} & =\mathrm{f}(\eta, \mathrm{~h}, \mathrm{~V}) \\
& =\mathrm{f}(\alpha, \mathrm{~h}, \mathrm{~V}) \\
& =\mathrm{f}(\eta, \mathrm{M}, \mathrm{~h}) \tag{32}\\
& =\mathrm{f}(\alpha, \mathrm{M}, \mathrm{~h})
\end{align*}
$$

depending on the independent variables required for adequate representation. The fuel flow for jet engines is also formulated as

$$
\begin{equation*}
\frac{\dot{\mathrm{W}}_{\mathrm{f}}}{\mathrm{P}}=\mathrm{f}(\mathrm{~h}, \mathrm{M}, \boldsymbol{\eta}) \tag{33}
\end{equation*}
$$

and is designed to give a consistent set of data from idle speeds through maximum augmentation. Again P is the atmospheric pressure (psf).

For rocket engines, the fuel flow is obtained from the specific impulse by the relation

$$
\begin{equation*}
\dot{\mathrm{W}}_{\mathrm{f}}=\mathrm{K}_{\mathrm{m}} \mathrm{~T}_{\mathrm{vac}} / \mathrm{I}_{\mathrm{Sp}} \tag{34}
\end{equation*}
$$

where
K_{m} is fuel flow correction factor.
I_{sp} is specific impulse (seconds), f (time).
The options of thrust and fuel flow available will handle most types of engine data formulations.

Basic equations of motion. - The basic equations are summarized below with the effects of gravity, aerodynamics, and propulsion included.

$$
\begin{align*}
\dot{\mathrm{V}}_{\mathrm{R}}= & \frac{\mathrm{T} \cos \alpha-\mathrm{D}}{\mathrm{~m}}-\mathrm{g} \sin \gamma_{\mathrm{R}}+\omega^{2} \mathrm{r} \cos \beta\left(\cos \beta \sin \gamma_{R}\right. \\
& \left.-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right) \tag{35}
\end{align*}
$$

$$
\begin{align*}
\dot{\gamma}_{R}= & \frac{(T \sin \alpha+L) \cos \varphi}{m V_{R}}-\left(\frac{\mathrm{g}}{\mathrm{~V}_{\mathrm{R}}}-\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{r}}\right) \cos \gamma_{\mathrm{R}}+2 \omega \cos \beta \cos \psi_{\mathrm{R}} \\
& +\frac{\omega^{2} \mathrm{r}}{\mathrm{~V}_{\mathrm{R}}} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right) \\
\dot{\mathrm{h}}= & \mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} \\
\dot{\mathrm{~W}}= & -\dot{\mathrm{W}}_{\mathrm{f}}-\dot{\mathrm{W}}_{\mathrm{inert}} \\
\dot{\psi}_{\mathrm{R}}= & -\frac{(\mathrm{T} \sin \alpha+\mathrm{L}) \sin \varphi}{\mathrm{m} \mathrm{~V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}}-\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{r}} \tan \beta \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \\
& -2 \omega\left(\sin \beta-\tan \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} \cos \beta\right) \\
\dot{\beta}= & \frac{\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}}{r} \tag{39}\\
\dot{\lambda}= & \frac{\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}}}{\mathrm{r} \cos \beta} \tag{40}
\end{align*}
$$

These equations are sufficient to define a vehicle trajectory for a spherical, rotating earth. The equation of motion for path range on the earth's surface is

$$
\begin{equation*}
\dot{x}=\frac{R_{\mathrm{O}}}{\mathrm{r}} \mathrm{~V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \tag{4.2}
\end{equation*}
$$

Auxiliary state variables. - Variables required for optimization, stopping or constraining a flight path, but which do not fall in the category of basic state variables, are defined as auxiliary state variables. The differential equations for these variables are integrated when desired by the user. The additional variables and their defining equations are given below.

Dummy time: The dummy time, introduced so that it may be used as a state variable, is defined by

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{D}} \mathrm{dt}=1 \tag{43}
\end{equation*}
$$

Aerodynamic heating integral: The aerodynamic heating integral, a measure of the neat encountered by a vehicle during flight, is defined by

$$
\begin{equation*}
\frac{\mathrm{dAHI}}{\mathrm{dt}}=\frac{1}{2} \rho \mathrm{~V}_{\mathrm{R}}^{3} \tag{44}
\end{equation*}
$$

where ρ is the atmospheric density.
Ideal relative $\Delta \mathrm{V}$: The ideal relative $\Delta \mathrm{V}$, the velocity change a vehicle would experience in the absence of atmospheric and gravitational effcets, is defined by

$$
\begin{equation*}
\frac{\mathrm{d} \Delta \mathrm{~V}}{\mathrm{dt}}=\frac{\mathrm{T}}{\mathrm{~m}}+\omega^{2} \mathrm{r} \cos \beta\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right) \tag{45}
\end{equation*}
$$

where m is the vehicle mass.
Drag loss: Drag loss, the velocity decrement resulting from motion through the atmosphere, is defined by

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{DL}}{\mathrm{dt}}=\frac{\mathrm{D}}{\mathrm{~m}} \tag{46}
\end{equation*}
$$

Gravity loss: Gravity loss, the velocity decrement resulting from motion in the earth's gravitational field, is defined by

$$
\begin{equation*}
\frac{d \mathrm{GI}_{1}}{\mathrm{dt}}=\mathrm{g} \sin \gamma_{\mathrm{R}} \tag{47}
\end{equation*}
$$

Thrust vector loss: Thrust vector loss, the velocity decrement resulting from the thrust vector not aligned with the flight path velocity vector, is defined by

$$
\begin{equation*}
\frac{d T V L}{d t}=\frac{T}{m}(1-\cos \alpha \dot{\alpha}) \tag{48}
\end{equation*}
$$

Inequality constraints. -During the course of a flight path, a function may be required to be less than or equal to and/or greater than or equal to a particular value or set of values. Inequality constraints arise from a number of different considerations: (1) geopolitical limitations; (2) passenger comfort; (3) control limits; (4) structural limits; and (5) engine limits.

Geopolitical: This class of inequality constraints is related to consideration of other than aircraft limitations. The maximum and minimum altitude may be imposcd by the FAA for traffic control. Aircraft noisc and sonic boom (ref. 7) are important in vicinity of cities, airports, etc. The sonic boom is of special considcration to SST flight paths because the boom signature and overpressure $(\Delta \mathrm{P})$ on the ground may design the flight path. The sonic boom overpressure on the ground, in the plane of the velocity vector, may be found from the following expression:

$$
\begin{equation*}
\frac{\Delta \mathrm{P}(\mathrm{~h} / \mathrm{L})^{3 / 4}}{\mathrm{~K}_{\mathrm{R}} \beta_{\mathrm{m}}^{1 / 4} \mathrm{P}_{\text {ref }}}=\mathrm{f}\left(\mathrm{M}, \mathrm{~h}, \beta_{\mathrm{m}} \mathrm{CLS} / 2 \mathrm{~L}^{2}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta_{\mathrm{m}}=\sqrt{\mathrm{M}^{2}-1} \\
& \mathrm{P}_{\mathrm{ref}}=\sqrt{\mathrm{P}_{\mathrm{SL}} \mathrm{P}_{\infty}} \\
& \mathrm{K}_{\mathrm{R}}=1.9
\end{aligned}
$$

and $f\left(M, h, \beta_{m} C_{L} S / 2 L^{2}\right)$ is a tabular function. The overpressure generated by an airplane at a latitude and longitude (β, λ) will intersect the ground ahead of the airplane in the plane of the velocity vector at a latitude and longitude of

$$
\begin{gather*}
\beta_{G}=\beta+\frac{h \sin \psi_{R}}{\beta_{\mathrm{m}} \mathbf{R}_{o}} \tag{50}\\
\lambda_{\mathrm{G}}=\lambda+\frac{\mathrm{h} \cos \psi_{\mathrm{R}}}{\beta_{\mathrm{m}} \mathrm{R}_{\mathrm{o}} \cos \beta} \tag{51}
\end{gather*}
$$

The shock pattern on the ground is considered to be the intersection of a cone (with the half apex angle equal to the complement of the Mach angle) with the ground plane (fig. 7). This intersection, or shock signature, is a hyperbola with the equation

$$
\begin{equation*}
h^{2}+y^{2}=x^{2} \beta_{m}^{2} \tag{52}
\end{equation*}
$$

where h is the vehicle altitude
y is lateral distance from the flight path
x is distance along the flight path from the vehicle to the point on the shock signature.

Figure 7: SONIC BOOM GEOMETRY

The lateral extent of the shock wave is given as a tabular function

$$
\begin{equation*}
\mathrm{y}_{\mathrm{c}}=\mathrm{f}(\mathrm{~h}, \mathrm{M}) \tag{53}
\end{equation*}
$$

The geographical location of a point along the shock signature is expressed in terms of longitude, latitude, heading angle, and altitude

$$
\begin{gather*}
\beta_{\text {local }}=\beta+\frac{1}{R_{o}}\left[\frac{\sin \psi_{\mathrm{R}}}{\beta_{\mathrm{m}}} \sqrt{\mathrm{~h}^{2}+\mathrm{y}^{2}}+\mathrm{y} \cos \psi_{\mathrm{R}}\right] \tag{54}\\
\lambda_{\text {local }}=\lambda+\frac{1}{\mathrm{R}_{\mathrm{o}} \cos \beta}\left[\frac{\cos \psi_{\mathrm{R}}}{\beta_{\mathrm{m}}} \sqrt{\mathrm{~h}^{2}+\mathrm{y}^{2}}-\mathrm{y} \sin \psi_{\mathrm{R}}\right] \tag{55}
\end{gather*}
$$

where y can go from $-y_{c}$ to $+y_{c}$ to cover the entire shock signature.
The overpressure along the shock signature is related to that given in equation $49\left(\Delta \mathrm{P}_{\mathrm{y}=0}\right)$ by

$$
\begin{equation*}
\Delta \mathrm{P}(\mathrm{y})=\Delta \mathrm{P}_{\mathrm{y}=0}\left[\frac{\mathrm{~h}}{\sqrt{\mathrm{~h}^{2}+\mathrm{y}^{2}}}\right]^{3 / 4} \tag{56}
\end{equation*}
$$

The maximum allowable overpressure over the ground is given by

$$
\begin{equation*}
\Delta P_{\max }=\Delta P_{\max }\left(\lambda_{\text {local }}, \beta_{\text {local }}\right) \tag{57}
\end{equation*}
$$

where $\lambda_{\text {local }}$ and $\beta_{\text {local }}$ are the points along the shock signature.
The next step is to derive a function in terms of the instantaneous vehicle state that represents the integral of the overpressure violation along the shock signature from $-y_{c}$ to $+y_{c}$. The overpressure violation is given by

$$
\begin{equation*}
\Delta P_{S}-\Delta P_{\max }>0 \tag{58}
\end{equation*}
$$

where the $\Delta \mathrm{P}_{\mathrm{S}}$ is given by equation 56. A true integral of the violation along the signature is not practical, therefore an approximation is made by summing the overpressure violations for several selected points as follows.

$$
\begin{align*}
& \left.\frac{d \text { BOOM PF }}{d t}=\delta\left[\sum_{i=1}^{N P}\left(\Delta P_{S}-\Delta P_{\max }\right)\right]_{\mathrm{i}}\right]^{2} \tag{59}\\
& \delta=0 \text { if } \Delta \mathrm{P}_{\mathrm{S}}<\Delta \mathrm{P}_{\max } \\
& \delta=1 \text { if } \Delta \mathrm{P}_{\mathrm{S}} \geq \Delta \mathrm{P}_{\max }
\end{align*}
$$

NP is the number of points selected for the approximation. At present 7 points are used spaced at an interval of $y_{c} / 3$. Equation 59 which defines the sonic boom penalty function, is integrated as one of the equations of motion along the
path with a terminal constraint value of zero. The partial derivatives of equation 59 with respect to the state and control variables are determined numerically (appendix B).

Passenger comfort: The comfort of a passenger is significant to the airlines who are trying to please the customer. To insure that the vehicle does not fly into areas of discomfort, placards may be imposed on normal load factor (n), pitch angle (θ), bank angle (φ), resultant physiological acceleration (RPA), and altitude rate (h). The altitude rate controls such items as rate of change of cabin pressure. The magnitude of cabin pressure is determined by altitude and mechanical or compressor limitations.

Control: These placards result from physical or mechanical limitations on the system. The control variables limited are pitch angle, bank angle, throttle setting, and wing sweep.

Structural: The structural requirement on airframe requires that the state of the system be constrained so that dynamic pressure, dynamic pressure times angle of attack ($\mathrm{Q} \alpha$), stagnation temperature, and cabin pressure differential do not exceed prescribed limits. The stagnation temperature is given by the adiabatic equation

$$
\begin{equation*}
\mathrm{T}_{\text {total }}=\mathrm{T}\left(1+\frac{\gamma-1}{2} \mathrm{M}^{2}\right) \tag{60}
\end{equation*}
$$

where $\gamma=$ specific heat ratio and \mathbf{T} is the ambient temperature. Cabin pressure differential can be formulated as a placard on altitude rate.

Engine: The engine is protected from flight conditions that would produce undesirable results by bounding the altitude Mach number region in which the vehicle can operate. In addition, maximum and minimum throttle setting may be bounded by a control placard as a function of altitude and Mach number.

Several methods of handling inequality constraints have been devised, i.e., integral method (ref. 3), penalty function method (ref. 4), and a method by Bryson, Denham, and Dreyfus (refs. 5 and 6). The method used during this study is based on the square of the violation. This method is similar to the integral method but produces a form more satisfactory for use with analytical partial derivatives. Consider a typical problem as shown in figure 8.

Let C be the time history of the function to be constrained, which violates the placard shown as P. The region of constraint violation is shaded. A measure of the total constraint violation is the areas shaded, or

$$
\begin{equation*}
A=\int_{t 0}^{T}(C-P) \delta d t \tag{61}
\end{equation*}
$$

where

$$
\delta=0 \text { when there is no violation }
$$

$$
\delta=1 \text { when there is a violation. }
$$

This formulation is not satisfactory for analytical partials since the partial derivative of $d A / d t$ with respect to the state or control variables does not have a measure of the violation. A form which does have the required nature is

$$
\begin{equation*}
A=\int_{t 0}^{T}(C-P)^{2} \delta d t \tag{62}
\end{equation*}
$$

where the partial derivative with respect to the state variables does have the proper form

$$
\begin{equation*}
\frac{\partial \dot{A}}{\partial X}=2(C-P)\left(\frac{\partial C}{\partial X}-\frac{\partial P}{\partial X}\right) \tag{63}
\end{equation*}
$$

which is still dependent on the violation.
Each of the inequality constraints is formulated in the same manner and permits a minimum as well as a maximum limit. Each is treated in the same manner. Inequality constraints can be imposed for the placards shown in figure 1.

Figure 8: INEQUALITY CONSTRAINT

The analysis of trajectories by the steepest-ascent method has been treated extentensively in the literature (refs. 1, 3, and 4). The derivation given here follows that of Bryson and Denham, reference 1. Since the steepest-ascent method is basic to this study, the derivation is included here for completeness.

Statement of problem. - The steepest-ascent solution is formulated to determine the control variable history, $u(t)$, so as to maximize a function (payoff function)

$$
\begin{equation*}
\varphi=\varphi[\bar{x}(T), T] \tag{64}
\end{equation*}
$$

and meet the terminal constraints

$$
\begin{equation*}
\bar{\psi}=\bar{\psi}[\bar{x}(T), T]=0 \tag{65}
\end{equation*}
$$

where $\varphi=$ performance index to be optimized $\overline{\mathrm{x}}=$ state variable matrix (order $\mathrm{n} \times 1$) $\mathrm{T}=$ time at the stopping condition $\bar{\psi}=$ a matrix of terminal constraint functions (order $\mathrm{p} \times 1$).

The stopping time, T, is established by the condition

$$
\begin{equation*}
\Omega=\Omega[\overline{\mathrm{x}}(\mathrm{~T}), \mathrm{T}]=0 \tag{66}
\end{equation*}
$$

where Ω is referred to as the stopping condition.
The equations of motion defining the state of the system can be written in terms of first-order differential equations. The form of these equations is

$$
\begin{equation*}
\overline{\bar{x}}(t)=\overline{\mathrm{f}}[\overline{\mathrm{x}}(\mathrm{t}), \overline{\mathrm{u}}(\mathrm{t}), \mathrm{t}] \tag{67}
\end{equation*}
$$

where $\bar{u}(t)$ is an ($m \times 1$) matrix of control variables
$\overline{\mathrm{f}}$ is an ($\mathrm{n} \times 1$) matrix of functions defining the time derivatives of the state variables.

The initial values of the state variables, $\bar{x}\left(t_{0}\right)$, are generally known for a given problem. If some of the initial values are not specified, they may be determined along with the control matrix to optimize φ. If it is desired to optimize some function other than one of the normal state variables, it is necessary to introduce an additional state variable and another differential equation defining the state variable and solve it simultaneously with the required equations of motion.

The steepest-ascent process is started by assuming a control variable time history, $\bar{u}(t)$. About the only requirement on $\bar{u}(t)$ is that the trajectory generated must reach the stopping condition.

The nominal trajectory is generated using the assumed $\bar{u}(t)$, vehicle and engine characteristics, and the initial conditions. The equations of motion (equation 67) are integrated numerically to obtain the nominal state variable program until the stopping condition is satisfied. For convenience, the nominal conditions will be designated by ()*, i.e.,

$$
\begin{align*}
& \overline{\mathrm{u}}(\mathrm{t})_{\text {nominal }}=\overline{\mathrm{u}}^{*}(\mathrm{t}) \tag{68}\\
& \overline{\mathrm{x}}(\mathrm{t})_{\text {nominal }}=\overline{\mathrm{x}}^{*}(\mathrm{t}) \tag{69}
\end{align*}
$$

The steepest-ascent procedure uses the concept of local linearization about a nominal flight path. For small perturbation in the control variables

$$
\begin{equation*}
\bar{u}(\mathrm{t})=\overline{\mathrm{u}}^{*}(\mathrm{t})+\delta \overline{\mathrm{u}}(\mathrm{t}) \tag{70}
\end{equation*}
$$

the state variables are perturbed

$$
\begin{equation*}
\overline{\mathrm{x}}(\mathrm{t})=\overline{\mathrm{x}}^{*}(\mathrm{t})+\delta \overline{\mathrm{x}}(\mathrm{t}) \tag{71}
\end{equation*}
$$

Substituting equations 70 and 71 into equation 67 , the linear differential equation for $\delta \bar{x}$ is obtained

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \delta \overline{\mathrm{x}}(\mathrm{t})=\mathrm{F} \delta \overline{\mathrm{x}}+\mathrm{G} \delta \bar{u} \tag{72}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{F}=\left[\begin{array}{ccc}
\left(\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{x}_{1}}\right)^{*} & \cdots & \cdot \\
\vdots & \left(\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{x}_{\mathrm{n}}}\right)^{*} \\
\left(\frac{\partial \mathrm{f}_{\mathrm{n}}}{\partial \mathrm{x}_{1}}\right)^{*} & \cdots & \cdots \\
\vdots \\
\partial \mathrm{x}_{\mathrm{n}}
\end{array}\right)^{*} \quad \text { (order } \mathrm{n} \times \mathrm{n} \text {) } \tag{73}\\
& \mathrm{G}=\left[\begin{array}{ccc}
\left(\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{u}_{1}}\right)^{*} & \cdots & \cdot \\
\vdots & \left(\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{u}_{\mathrm{m}}}\right)^{*} \\
\left(\frac{\partial \mathrm{f}_{\mathrm{n}}}{\partial \mathrm{u}_{1}}\right)^{*} & \cdots & \cdots \\
\vdots
\end{array}{ }^{*}\left(\frac{\partial \mathrm{f}_{\mathrm{n}}}{\partial \mathrm{u}_{\mathrm{m}}}\right)^{*}{ }^{*} \quad\right. \text { (order n x m) } \tag{74}
\end{align*}
$$

Again the ()* indicates that the partial derivatives are cvaluated along the nominal flight path.

Adjoint equations. - The effects of the control variable perturbations on the payoff quantity, stopping condition, and constraint functions must now be determined.

Equation 72 is a linear equation that describes the small perturbations about the nominal path. To this is added a linear differential equation adjoint to equation 72

$$
\begin{equation*}
\frac{d \lambda}{d t}=-F^{\prime} \lambda \tag{75}
\end{equation*}
$$

where the λ 's are a matrix of adjoint variables. The significance of the λ 's and their role as influence functions for $\varphi, \bar{\psi}$, and Ω will be demonstrated. To show this, premultiply equation 72 by λ^{\prime}, equation 75 by $\delta \bar{x}^{\prime}$ (where ()' indicates the transpose of the matrix), and add the transpose of the second product to the first

$$
\begin{equation*}
\lambda^{\prime} \frac{d \delta \bar{x}}{d t}+\frac{d \lambda^{\prime}}{d t} \delta \bar{x}=\lambda^{\prime} F \delta \bar{x}+\lambda^{\prime} G \delta \bar{u}-\lambda^{\prime} F \delta \bar{x} \tag{76}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\frac{d}{d t}\left(\lambda^{\prime} \delta \bar{x}\right)=\lambda^{\prime} G \delta \bar{u} \tag{77}
\end{equation*}
$$

Integrating equation 77 ,

$$
\begin{equation*}
\left(\lambda^{\prime} \delta \bar{x}\right)_{t=T}=\int_{t_{o}}^{T} \lambda^{\prime} G \delta \bar{u} d t+\left(\lambda^{\prime} \delta \bar{x}\right)_{t=t_{o}} \tag{78}
\end{equation*}
$$

Examining this equation gives much information on the nature of the adjoint variables. The product $G \delta \bar{u}$ gives the rate of change of the state variables due to changes of the control variables only:

$$
\begin{equation*}
\delta \dot{\bar{x}}=G \delta \bar{u} \tag{79}
\end{equation*}
$$

therefore, equation 78 can be written

$$
\begin{equation*}
\left(\lambda^{\prime} \delta \bar{x}\right)_{t=T}=\int_{t_{o}}^{T} \lambda^{\prime} \delta \dot{\bar{x}} \mathrm{dt}+\left(\lambda^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \tag{80}
\end{equation*}
$$

but this is exactly the form of the Duhamel integral, which is

$$
\begin{equation*}
z(t)=\int_{t_{0}}^{t} A(t-\tau) \frac{d f(\tau)}{d \tau} d \tau+A\left(t-t_{o}\right) f\left(t_{o}\right) \tag{81}
\end{equation*}
$$

where $A(t-\tau)$ is the indicial response at time t due to a unit step in $f(t)$ at time τ. The $f(t)$ is the arbitrary forcing function; $z(t)$ is the response of the system to the arbitrary forcing function. Making a comparison between the two equations for $t=T$, the λ 's are the indicial response of the system due to a unit step in each element of the state variable vector, $\delta \overline{\mathrm{x}}$. The variables of interest for this work are the payoff function φ, the stopping condition Ω, and the terminal constraints $\bar{\psi}$. A set of λ 's can now be defined corresponding to φ, Ω, and the $\bar{\psi}$'s. The adjoint variables are identified as

$$
\begin{equation*}
\lambda_{\varphi}^{\prime}=\frac{\partial \varphi}{\partial \overline{\mathrm{x}}}, \quad \lambda_{\psi}^{\prime}=\frac{\partial \bar{\psi}}{\partial \overline{\mathrm{x}}}, \quad \lambda_{\Omega}^{\prime}=\frac{\partial \Omega}{\partial \overline{\mathrm{x}}} \tag{82}
\end{equation*}
$$

where $\lambda^{\prime} \varphi$ is a ($1 \times n$) matrix, $\lambda^{\prime}{ }_{\psi}$ is a (pxn) matrix, and $\lambda^{\prime} \Omega$ is a ($1 \times n$) matrix. The λ 's are influence functions and may be considered as

$$
\begin{equation*}
\lambda_{\varphi_{\mathrm{i}}}=\frac{\partial \varphi}{\partial \mathrm{x}_{\mathrm{i}}} \tag{83}
\end{equation*}
$$

or the change of φ due to a unit step change of x_{i}. Similar interpretation can be made for λ_{ψ} and λ_{Ω}. A set of boundary conditions can now be written for the λ 's at $\mathrm{t}=\mathrm{T}$ giving

$$
\begin{array}{ll}
\lambda_{\varphi_{j}}(T)=\left(\frac{\partial \varphi}{\partial x_{j}}\right)_{T} & j=1, \ldots, n \\
\lambda_{\psi_{j}}^{i}(T)=\left(\frac{\partial \psi_{i}}{\partial x_{j}}\right)_{T} & i=1, \ldots, p \quad j=1, \ldots, n \\
\lambda_{\Omega_{j}}(T)=\left(\frac{\partial \Omega}{\partial x_{j}}\right)_{T} & j=1, \ldots, n \tag{86}
\end{array}
$$

If the payoff, constraint, and stopping functions are restricted to state variables, the $\lambda(T)$'s are either zeroes or ones.

Starting from the terminal values of the λ 's, equation 75 may be integrated backwards along the flight path (i.c., from T to t_{0}) using partial derivatives which were stored during the forward trajectory to obtain $\lambda^{\prime} \varphi_{0}, \lambda_{\psi}^{\prime}$, and $\lambda_{\Omega}^{\prime}$ as functions of time.

Substituting the functions from equations 84,85 , and 86 into equation 78 and noting that

$$
\begin{align*}
& \left(\lambda_{\varphi}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{T}}=\delta \varphi(\mathrm{T}) \tag{87}\\
& \left(\lambda_{\psi}^{\prime}{ }^{\delta} \overline{\mathrm{x}}\right)_{\mathrm{T}}=\delta \bar{\psi}(\mathrm{T}) \tag{88}\\
& \left(\lambda_{\Omega}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{T}}=\delta \Omega(\mathrm{T}) \tag{89}
\end{align*}
$$

the following are obtained

$$
\begin{align*}
& \delta \varphi(\mathrm{T})=\int_{\mathrm{t}_{0}}^{\mathrm{T}} \lambda_{\varphi}^{\prime} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\varphi}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \tag{90}\\
& \delta \bar{\psi}(\mathrm{~T})=\int_{\mathrm{t}_{\mathrm{o}}}^{\mathrm{T}} \lambda_{\psi}^{\prime} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\psi}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \tag{91}
\end{align*}
$$

$$
\begin{equation*}
\delta \Omega(\mathrm{T})=\int_{\mathrm{t}_{0}}^{\mathrm{T}} \lambda_{\Omega}^{\prime} \mathrm{G} \delta \bar{u} \mathrm{dt}+\left(\lambda_{\Omega}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}} \tag{92}
\end{equation*}
$$

These equations would give the changes in the payoff function, stopping conditions, and terminal constraints if the final time (T) at the stopping condition did not change. In general, this is not true and, due to small perturbations, the stopping time is at some time, $T+\Delta T$. To account for this change equations 90,91 , and 92 become

$$
\begin{align*}
& \mathrm{d} \varphi=\int_{t_{0}}^{\mathrm{T}} \lambda_{\varphi}^{\prime} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\varphi}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}}+\dot{\varphi}(\mathrm{T}) \Delta \mathrm{T} \tag{93}\\
& \mathrm{~d} \psi=\int_{t_{0}}^{\mathrm{T}} \lambda_{\psi}^{\prime} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\psi}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}}+\dot{\bar{\psi}}(\mathrm{T}) \Delta \mathrm{T} \tag{94}\\
& \mathrm{~d} \Omega=\int_{\mathrm{t}_{0}}^{\mathrm{T}} \lambda^{\prime}{ }_{\Omega} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda^{\prime} \Omega \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{\mathrm{o}}}+\dot{\Omega}(\mathrm{T}) \Delta \mathrm{T} \tag{95}
\end{align*}
$$

Note that these equations are now total differentials. This set of equations gives the changes in $\varphi, \bar{\psi}$, and Ω for the perturbed trajectory.

The stopping condition does not change from one iteration to the next, therefore $d \Omega(T)=0$, giving the relation

$$
\begin{equation*}
\Delta T=-\frac{1}{\dot{\Omega}(T)} \int_{t_{o}}^{T} \lambda_{\Omega}^{\prime} G \delta \bar{u} d t-\frac{1}{\dot{\Omega}(T)}\left(\lambda_{\Omega}^{\prime} \delta \bar{x}_{t=t_{o}}\right. \tag{96}
\end{equation*}
$$

the equation for φ and $\bar{\psi}$ from equations 93,94 , and 95 can now be written as

$$
\begin{align*}
& \mathrm{d} \varphi=\int_{\mathrm{t}_{0}}^{\mathrm{T}} \lambda_{\varphi \Omega}^{\prime} \mathrm{G} \delta \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\varphi \Omega}^{\prime} \delta \overline{\mathrm{x}}\right)_{\mathrm{t}=\mathrm{t}_{0}} \tag{97}\\
& \mathrm{~d} \bar{\psi}=\int_{\mathrm{t}_{\mathrm{o}}}^{\mathrm{T}} \lambda_{\psi \Omega}^{\prime}{ }_{\psi \rho} \mathrm{G} \overline{\mathrm{u}} \mathrm{dt}+\left(\lambda_{\psi \Omega}^{\prime} \delta \bar{x}_{)_{t}}=\mathrm{t}_{\mathrm{o}}\right. \tag{98}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{\varphi \Omega}^{\prime}=\lambda_{\varphi}^{\prime}-\frac{\dot{\varphi}(T)}{\dot{\Omega}(T)} \lambda_{\Omega}^{\prime} \tag{98a}\\
& \lambda_{\psi \Omega}^{\prime}=\lambda_{\psi}^{\prime}-\frac{\dot{\dot{\psi}}(T)}{\dot{\Omega}(T)} \lambda_{\Omega}^{\prime} \tag{98b}
\end{align*}
$$

The $\lambda_{\varphi \Omega}$ and $\lambda_{\psi \Omega}$ are modified influence functions, which account for a change in the time at the stopping condition.

The integral terms of equations 97 and 98 may be compared with the convolution integral used for determining the response of a system to a continuous control variable forcing function by first obtaining the impulse response functions, i.e.,

$$
\begin{equation*}
z(t)=\int_{t_{0}}^{t} h(t-\tau) g(\tau) d \tau \tag{99}
\end{equation*}
$$

where $h(t-\tau)$ is the response of a system at time t due to a unit control variable impulse at time τ. The function $g(\tau)$ is the continuous control variable forcing function and $z(t)$ is the response at some arbitrary time t to that forcing function.

If the arbitrary time is taken to be the final time T, and the forcing functions are the perturbed control variables $\delta \bar{u}$, the functions $\lambda^{\prime} \varphi \Omega G$ and $\lambda^{\prime}{ }_{\psi \Omega} G$ are shown to be the responses of the final values of the payoff function and terminal constraints to a unit impulse of each of the elements of $\delta \bar{u}$ at some time t.

- Variational equations. - For steepest ascent, the control variable history, $\delta \bar{u}$, that maximizes $d \varphi$ given by equation 97 for a given $d \bar{\psi}$ and $d \Omega=0$ is desired. An additional requirement is that $d U$ defined from

$$
\begin{equation*}
(\mathrm{dU})^{2}=\int_{t_{0}}^{\mathrm{T}} \delta \bar{u}^{\prime}(\mathrm{t}) \mathrm{W} \delta \bar{u}(\mathrm{t}) \mathrm{dt} \tag{100}
\end{equation*}
$$

be chosen to ensure that the perturbations, $\delta \bar{u}$, will be small enough for the linearizations leading to equations 84,85 , and 86 to be within reason. W is an ($\mathrm{m} \times \mathrm{m}$) symmetric weighting matrix chosen to improve convergence during the steepest-ascent procedure. The automation of logic for the selection of (dU) ${ }^{2}$ and the weighting matrix are discussed in later sections.

The values of $d \bar{\psi}$ are chosen to bring the nominal solution closer to the desired terminal constraints, $\bar{\psi}=0$. It is desirable, in many cases, to restrict the change of constraints, $\mathrm{d} \bar{\psi}$, allowed for each iteration.

The procedure now follows the calculus of variations using the method of Lagrange multipliers. A linear combination of equations 98 and 100 with equation 97 gives

$$
\begin{align*}
d \varphi= & \int_{t_{o}}^{T} \lambda^{\prime} \varphi \Omega G \delta \bar{u} d t+\lambda_{\varphi \Omega}^{\prime}\left(t_{o}\right) \delta \bar{x}\left(t_{o}\right) \\
& +\nu^{\prime}\left[\bar{d} \bar{\psi}-\int_{t_{o}}^{T} \lambda_{\psi \Omega}^{\prime} G \delta \bar{u} d t-\lambda_{\psi \Omega}^{\prime}\left(t_{o}\right) \delta \bar{x}\left(t_{o}\right)\right] \\
& +\mu\left[(d U)^{2}-\int_{t_{o}}^{T} \delta \bar{u}^{\prime \prime} W \delta \bar{u} d t\right] \tag{101}
\end{align*}
$$

or combined gives

$$
\begin{align*}
\mathrm{d} \varphi= & \int_{t_{o}}^{T}\left[\lambda_{\varphi \Omega}^{\prime} G-\nu^{\prime} \lambda_{\psi \Omega}^{\prime} G-\mu \quad \delta \bar{u}^{-\prime} W\right] \delta \bar{u} \mathrm{dt} \\
& +\left[\lambda_{\varphi \Omega}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)-\nu^{\prime} \lambda_{\psi \Omega}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)\right] \delta \overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{o}}\right) \\
& +\nu^{\prime} \mathrm{d} \bar{\psi}+\mu(\mathrm{dU})^{2} \tag{102}
\end{align*}
$$

where ν is a ($1 \times \mathrm{p}$) matrix of constant Lagrange multipliers, and μ is a constant. Both ν and μ can be chosen for convenience, since they were assumed arbitrary.

Taking the variation of equation 102 with respect to the control variable gives
$\delta(\mathrm{d} \varphi)=\int_{\mathrm{t}_{0}}^{\mathrm{T}}\left[\left(\lambda_{\varphi \Omega}^{\prime} G-\nu^{\prime} \lambda_{\psi \Omega}^{\prime} G-\mu \delta u^{-1} W\right) \delta^{2-\bar{u}-\mu} \delta^{2^{-1}} \mathrm{~W} \delta \bar{u}\right] d t$
where $\delta \overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{O}}\right), \mathrm{d} \bar{\psi}$, and $d U$ are considered to be constants. Since this is a scalar equation

$$
\begin{equation*}
\delta^{2} \bar{u}^{\prime} \mathrm{W} \delta \overline{\mathrm{u}} \equiv \delta \bar{u}^{\prime} \mathrm{W} \delta^{2} \mathrm{u} \tag{104}
\end{equation*}
$$

i.e., the transpose is equal to the matrix where W is a symmetric matrix. Therefore the expression for the variance of $d \varphi$ is reduced to

$$
\begin{equation*}
\delta(\mathrm{d} \varphi)=\int_{\mathrm{t}_{\mathrm{o}}}^{\mathrm{T}}\left[\lambda^{\prime} \varphi \Omega \mathrm{G}-\nu^{\prime} \lambda^{\prime} \psi \Omega \mathrm{G}-2 \mu \delta \bar{u}^{-1} \mathrm{~W}\right] \delta^{2} \overline{\mathrm{u}} \mathrm{dt} \tag{105}
\end{equation*}
$$

The optimal d φ will occur where its variance is zero. Therefore, since $\delta^{2} \bar{u} \neq 0$,

$$
\begin{equation*}
\lambda_{\varphi \Omega}^{\prime}{ }_{\varphi}^{G}-\nu^{\prime} \lambda_{\psi \Omega} \mathrm{G}-2 \mu \delta \bar{u}^{\prime} \mathrm{w}=0 \tag{106}
\end{equation*}
$$

Solving for $\delta \bar{u}$ gives

$$
\begin{equation*}
\delta \bar{u}=\frac{1}{2 \mu} W^{-1} G^{\prime}\left(\lambda_{\varphi \Omega}-\lambda_{\psi \boldsymbol{\Omega}^{\nu}}\right) \tag{107}
\end{equation*}
$$

where the ($)^{-1}$ indicates the inverse of a matrix. Substituting the expression back into equation 98 and solving for ν gives

$$
\begin{equation*}
\nu=\mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi}-2 \mu \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta} \tag{108}
\end{equation*}
$$

where

$$
\begin{align*}
& d \bar{\beta}=\mathrm{d} \bar{\psi}-\lambda_{\psi \Omega}^{\prime}\left(t_{o}\right) \delta \bar{x}\left(t_{o}\right) \tag{108a}\\
& I_{\psi \psi} \mathrm{z} \int_{t_{o}}^{T} \lambda_{\psi \Omega}^{\prime} G W^{-1} G^{\prime} \lambda_{\psi \Omega} d t \tag{108b}\\
& I_{\psi \varphi}=\int_{t_{o}}^{T} \lambda_{\psi \Omega}^{\prime}{ }_{\psi W} W^{-1} G^{\prime} \lambda_{\varphi \Omega} d t \tag{108c}\\
& I_{\varphi \varphi}=\int_{t_{o}}^{T} \lambda_{\varphi \Omega}^{\prime} G W^{-1} G^{\prime} \lambda_{\varphi \Omega} d t \tag{108d}
\end{align*}
$$

In the computer program, reference is made to the ' I " matrix, which is defined as

$$
\begin{equation*}
I=\int_{t_{o}}^{T} \Lambda^{\prime} G W^{-1} G^{\prime} \Lambda d t \tag{109}
\end{equation*}
$$

where Λ is the $\mathrm{n} \times(\mathrm{p}+1)$ matrix, which may be represented as a partitioned matrix as

$$
\Lambda=\begin{array}{cc}
{\left[\begin{array}{ll}
\lambda_{\varphi \Omega} & \vdots \\
\mathrm{n} \times 1 & \lambda_{\psi \Omega}
\end{array}\right]} \tag{110}\\
\mathrm{n} \times \mathrm{p}
\end{array}
$$

The I matrix can be partitioned as follows

$$
I=\left[\begin{array}{c:c}
\mathrm{I}_{\varphi \varphi} & \mathrm{I}_{\varphi \psi} \tag{111}\\
\hdashline \mathrm{I}_{\psi \varphi} & \mathrm{I}_{\psi \psi}
\end{array}\right]
$$

This is a symmetric matrix since $I_{\varphi \psi}=I^{\prime} \psi \psi^{\varphi}$ and I $\psi \psi{ }^{\prime}$ is symmetric, where $I_{\varphi \varphi}, I_{\psi \varphi}$, and $I_{\psi \psi}$ are defined by equation $108 \mathrm{~b}, \mathrm{c}$, d.

Using the expression for ν (equation 108) and the equation for $\delta \bar{u}$ (equation 107), substituting into equation 100 and solving for μ gives

$$
\begin{equation*}
\mu= \pm \frac{1}{2}\left[\frac{\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \omega}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \omega}}{(\mathrm{dU})^{2}-\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta}}\right]^{1 / 2} \tag{112}
\end{equation*}
$$

The Lagrange multipliers referred to in STOP are of different form than those given by equations 108 and 112. For convenience, the 'first Lagrange multiplier" in the program, μ_{s}, is

$$
\begin{equation*}
\mu_{\mathrm{S}}=\frac{1}{2 \mu}= \pm\left[\frac{(\mathrm{du})^{2}-\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\varphi \varphi}^{-1} \mathrm{~d} \bar{\beta}}{\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{\prime} \mathrm{I}_{\psi \varphi}^{\prime}}\right]^{1 / 2} \tag{113}
\end{equation*}
$$

and the array of Lagrange multipliers are denoted by

$$
\begin{equation*}
\nu_{\mathrm{s}}=-\frac{\nu}{2 \mu}=-\mu_{\mathrm{s}} \nu \tag{114}
\end{equation*}
$$

The form of the perturbed control variable (equation 107) therefore can be written as

$$
\begin{equation*}
\delta \overline{\mathrm{u}}=\mathrm{W}^{-1} \mathrm{G}^{\prime} \Lambda\left[\frac{\mu_{\mathrm{S}}}{\nu_{\mathrm{s}}}\right] \tag{115}
\end{equation*}
$$

The complete expression for $\delta \overline{\mathrm{u}}$ can now be obtained by substituting the equations for μ and ν into equation 107 , which gives

$$
\begin{align*}
& \delta \vec{u}(t)= \pm W^{-1} G^{\prime}\left(\lambda_{\varphi \Omega}-\lambda_{\psi \Omega} \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi}\right)\left[\frac{(\mathrm{dU})^{2}-\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta}}{\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi}}\right]^{1 / 2} \\
& +W^{-1} G^{\prime} \lambda_{\psi \boldsymbol{\Omega}} I_{\psi \psi}^{-1} \mathrm{~d} \overline{\boldsymbol{\beta}} \tag{116}
\end{align*}
$$

This equation is the foundation for changing the control variable to improve the performance for each iteration. The payoff function change predicted for an iteration is obtained by substituting equation 116 for $\delta \bar{u}(t)$ into equation 97 for $\mathrm{d} \omega$, giving

$$
\begin{gather*}
\mathrm{d} \omega= \pm\left[\left((\mathrm{dU})^{2}-\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta}\right)\left(\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi}\right)\right]^{1 / 2} \\
+\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta}+\lambda_{\varphi \Omega^{\prime}}^{\left(\mathrm{t}_{\mathrm{o}}\right)} \delta \overline{\mathrm{x}}^{\left(\mathrm{t}_{\mathrm{o}}\right)} \tag{117}
\end{gather*}
$$

where the + sign is used to increase φ and the - sign to decrease φ. This procedure will give the optimum trajectory as discussed under the statement of the problem. The method for perturbing the free initial condition $\delta \bar{x}\left(t_{0}\right)$ will be discussed in a later section. The effects of varying the initial conditions enter the problem through its effect on $d \bar{\beta}$ as well as $\delta \overline{\mathbf{x}}\left(\mathrm{t}_{\mathrm{o}}\right)$.

Automatic Convergence

Iterative procedure. - A major problem encountered in steepest-ascent calculations is the choice of the step size, (dU) ${ }^{2}$. Too small a step results in regular, but slow convergence; too large a step results in irregular progress and probable convergence failure. Therefore, to insure convergence in a minimum amount of computer time, it is desirable to automatically select the largest step size possible, per iteration, consistent with the linearity requirements of the steepest-ascent technique. The selection technique used in this program is patterned after a method developed by D. S. Hague (ref. 3).

A function f_{i} (a payoff or constraint function) rarely is - nor does it have to be - perfectly linear to be acceptable for steepest-ascent calculations. The degree of linearity or nonlinearity is, however, important and is defined as

$$
\begin{equation*}
\mathrm{f}_{\mathrm{NL}_{\mathrm{i}}}=\left|\frac{\mathrm{df}_{\mathrm{i}}^{*}-\mathrm{df}}{\mathrm{i}}\right| \tag{118}
\end{equation*}
$$

where $f_{N_{L}}$ is the degree of nonlinearity representing the percentage error of the linear prediction to a parabolic approximation of the actual change of a payoff variable or a constraint. $\mathrm{df}_{\mathrm{i}}{ }^{*}$ is the actual change in f_{i} and df_{i} is the linear prediction of the change in f_{i}. Both the degree of linearity and choice of the functicn used to measure lincarity must be chosen with care and are discussed below.

On a perturbed trajectory the predicted payoff function change is given by

$$
\begin{equation*}
\mathrm{d} \varphi=\left[\left(\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi}^{-1} \mathrm{I}_{\psi \varphi}\right)\left((\mathrm{dU})^{2}-\mathrm{d} \psi^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \psi\right)\right]^{1 / 2}+\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\psi} \tag{119}
\end{equation*}
$$

Essentially the step size may be defined as a choice of $\left(\mathrm{dU}^{2}\right)$ and $\mathrm{d} \Psi$. Consider the one parameter set of perturbations

$$
\begin{align*}
& (\mathrm{dU})^{2}=\mathrm{k}^{2}\left(\mathrm{~d} U_{\mathrm{O}}\right)^{2} \tag{120}\\
& \mathrm{~d} \bar{\Psi}_{\mathrm{i}}=\mathrm{kd} \bar{\psi}_{\mathrm{O}_{\mathrm{i}}} \tag{121}
\end{align*}
$$

where $d U_{o}{ }^{2}$ and $d \Psi_{o_{i}}$ are arbitrary nominal changes. It follows on substituting equations 120 and 121 into equation 119 that

$$
\begin{equation*}
\mathrm{d} \varphi(\mathrm{k})=\mathrm{kd} \boldsymbol{\varphi}_{\mathrm{o}} \tag{122}
\end{equation*}
$$

Here $\mathrm{d} \varphi_{\mathrm{o}}$ is the change in performance resulting from the nominal step, $\left(\mathrm{d} \mathrm{U}_{\mathrm{o}}\right)^{2}$ and $\mathrm{d} \bar{\psi}_{\mathrm{O}_{i}}$, which results from the choice of $\mathrm{k}=1$. Consider figure 9 where the nominal step is denoted by the "trial" step and f_{i} is any of the functions φ or $\bar{\psi}$.

Fiqure 9. PARABOLIC APPROXIMATION

The predicted linear variation with k is the straight line through the origin and the point (1.0, df_{o}). For a small enough step the actual nonlinear change will substantially agree with this line. As the step size increases the two results will, however, tend to diverge. Suppose a parabola is fitted through the origin and the point (1.0, $\mathrm{df}_{\mathrm{O}}{ }^{*}$) having the same slope at the origin as the linear change. The equation of this parabola is

$$
\begin{equation*}
d f^{*}=\left(\mathrm{df}_{\mathrm{o}}^{*}-\mathrm{df}_{\mathrm{o}}\right) \mathrm{k}^{2}+\mathrm{df}_{\mathrm{o}} \mathrm{k} \tag{123}
\end{equation*}
$$

Provided a trial step is reasonably chosen, this expression will approximate the actual nonlinear change over a considerably greater region of step sizes than did the linear prediction. Essentially, the combination of a trial result and the linear prediction allow a second-order approximation to the variation of a function with step size.

Assuming for the moment that $\mathrm{df}_{\mathrm{O}}>\mathrm{df}_{\mathrm{O}}{ }^{*}$, and $\mathrm{df}_{\mathrm{O}}(0) / \mathrm{k}>0$, we can anticipate from equation 123 that the greatest change in f will occur when

$$
\begin{equation*}
\mathrm{k} \approx-\frac{\mathrm{df}_{\mathrm{O}}}{2\left(\mathrm{df}_{\mathrm{O}}{ }^{*}-\mathrm{d} f_{\mathrm{O}}\right)} \tag{124}
\end{equation*}
$$

Further, on substituting this result into equations 123 and 118, it follows that at this point the nonlinearity, $f_{N L}$, will be about 0.5 . If the actual nonlinear variation were to be parabolic this value would be the desired nonlinearity. In practice, it has been found that this value is too high. Using 0.5 in conjunction with the parabolic approximation leads to steps that are "over the hump." Experience has shown that using a nonlinearity of $\mathrm{f}_{\mathrm{NL}}=0.3$ practically eliminates this problem and leads to satisfactory steps.

Now that a satisfactory degree of nonlinearity has been determined, the second question, "which of the f_{NL} to use ?" has still to be answered. This is equivalent to deciding which of the functions of interest should be used to control the step size. One approach is to control with the worst-behaved function, i.e., the one whose nonlinearity is greatest. If this approach is taken, difficulties immediately appear. For example, it may be that only one function is behaving badly, the remainder being extremely linear. In this case, small steps with resulting slow convergence, or failure to converge, may result. Failure to converge here, however, does not mean divergence, but that (dU) ${ }^{2}$ is so significantly reduced due to the nonlinearity of the control function that the changes in constraints and payoff functions become lost in computer noise. This results in negligible or random variation of the constraint and payoff variables from iteration to iteration. The conclusion is made, therefore, that the control must be made with the best behaved function, that is, the one having the most linearity.

To ensure that the remaining functions do not wander too far, various tests are designed to maintain convergence consistent with the linearity requirements of the steepest-ascent method. These tests, though based on experience to some extent, have proven to be a successful means of ensuring convergence.

Majority vote test: The majority vote test consists of the examination of the changes in the constraint and the payoff functions based upon the results of the previous trial. Only those functions that are more than a specified tolerance from their desired value are examined. If at least the same number of functional changes are in the proper direction as those with adverse travel, then the test is satisfied. Otherwise, the step size, (dU) ${ }^{2}$, is reduced and a new trial is computed. The majority vote test, in addition to the adverse φ test discussed below, is also used to determine whether or not a valid step is acceptable, prior to going into a reverse integration of the adjoint equations of motion. A valid step is performed after a limited number of trials or a successful trial and consists of the forward integration of the equations of motion together with the partial derivative calculations.

Step size coefficients: The step size coefficients are based on the functional nonlinearities as shown in figure 9. Using the parabolic approximation, the step size that causes the best-behaved function to have a nonlinearity of 0.3 is computed. If the resulting step size coefficient, k, fails to satisfy the condition $0.5<\mathrm{k}<2.0$, then a further trial at the upper or lower limit is undertaken. Experience has indicated that these bounds are reasonable ones to impose on interpolation or extrapolation using the parabolic approximation.

Adverse φ test: The adverse φ test follows the calculation of the step size coefficient. The test ensures that, if adverse travel occurs in the payoff function φ, it will not exceed a specified tolerance. When the adverse travel exceeds this tolerance, the problem is regarded as too nonlinear and $(\mathrm{dU})^{2}$ is again reduced, followed by a new trial computation.

Successful completion of the above tests is necessary to perform a valid step. Other logic, however, is incorporated to force a valid step under certain circumstances. Such tests are discussed in the user's manual.

Figure 10 is presented to illustrate the flow of the automatic convergence process.

Variable initial conditions. - The steepest-ascent technique determines, as a by-product of the optimization process, a set of influence coefficients that defines the perturbation of the payoff quantity per unit-step-change in the initial state vector. The problem is to determine the correct direction to perturb the initial conditions in order to increase performance on the next iteration. In addition, logic must be incorporated to guarantee convergence of the initial conditions to their optimum values. It is usually desirable to allow the initial condition vector to be free only in a bounded region.

The performance predicted for an iteration, given by equation 117, provides the basis for selecting the optimum initial conditions. Consider the equation

$$
\begin{align*}
\mathrm{d} \varphi(\mathrm{~T})= & \pm\left[\left((\mathrm{dU})^{2}-\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\beta}\right)\left(\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \varphi \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi} \varphi\right)\right]^{1 / 2} \\
& +\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi}^{-1} \psi \mathrm{~d} \bar{\beta}+\lambda^{\prime} \varphi \Omega\left(\mathrm{t}_{\mathrm{o}}\right) \delta \overline{\mathrm{X}}\left(\mathrm{t}_{\mathrm{o}}\right) \tag{125}
\end{align*}
$$

For a given problem solution, the payoff function has been optimized; that is, $\mathrm{d} \varphi(\mathrm{T})=0$, the constraints have been met, $\mathrm{d} \bar{\psi}=0$, and the initial conditions are at their optimum values so that $\delta \overline{\mathrm{X}}\left(\mathrm{t}_{\mathrm{o}}\right)=0$. Then, since $(\mathrm{dU})^{2} \neq 0$, the relation must hold that

$$
\begin{equation*}
\mathrm{I}_{\varphi \varphi}-\mathrm{I}_{\psi \varphi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{I}_{\psi \varphi}=0 \tag{126}
\end{equation*}
$$

Now restricting this to the case where the constraints are met but the initial conditions have not yet been optimized, equation 125 can be reduced to

$$
\begin{equation*}
\mathrm{d} \varphi(\mathrm{~T})=\left[\left(\lambda_{\varphi \Omega}^{\prime}\left(t_{0}\right)-I_{\psi \varphi}^{\prime} I_{\psi \psi}^{-1} \lambda_{\psi \Omega}^{\prime}\left(t_{0}\right)\right)\right] \delta \bar{X}\left(t_{0}\right) \tag{127}
\end{equation*}
$$

if it is assumed (as is the case for the optimum) that equation 126 holds.
This expression allows the variation of the free initial conditions for each iteration but is exact only for the optimum path. The correct direction to perturb $\overline{\mathbf{X}}\left(t_{0}\right)$ is the direction to improve performance. In obtaining optimum performance, perturbation of each free initial condition is considered independently since equation 127 shows that the effects of the perturbations are uncoupled.

Convergence is guaranteed by bounding the perturbations. The perturbation size is controlled using the rule that if the perturbation is in the same direction

for two successive iterations, then the value of the perturbation is doubled, or halved if the perturbation changes sign. The maximum initial condition change per iteration and the limiting values are specified for each free variable.

Weighting functions matrix. - A cursory glance at the steepest-ascent method might lead to the conclusion that the choice of weighting matrices is not a significant problem, but in practice this is not always so. The control variables, for example, may have widely differing abilities to affect the final values of the payoff and constraint functions. It is necessary, therefore, to differentiate between powerful and weak control variables, based on their ability to affect the optimization functions, particularly in their ability to affect the payoff function. Even with a single control variable, this problem remains, since along some subarcs the control may be weak and on others strong.

Two types of weighting are implied, one resulting from the differences in sensitivity of the multiple control variables and the other resulting from differences in sensitivity of a single control variable along a trajectory. There are two basic reasons for the use of weighting matrices. One is to speed up convergence and the other is to ensure convergence. It is fairly obvious that a wellchosen weighting matrix can improve convergence even in a well-behaved problem that involves both a weak and a strong control variable. The steepest-ascent process can be speeded up by forcing larger perturbations in the weak control variable in the initial iterations, rather than waiting for the stronger one to converge before making significant changes in the weaker one. What is not so obvious is the fact that, without a reasonably chosen weighting matrix, it is possible that the steepest-ascent method may fail to converge entirely. Generally, it is a relatively straightforward process to develop the control history of a single control variable until it lies within the neighborhood of the optimal solution, provided the problem does not involve weak and powerful subarcs.

However, the control history can only be developed into the neighborhood of the optimum since there is a region about the optimal history in which the control variable is ineffective by definition. If the problem involves terminal constraints, however, it is only incffective for thosc perturbations that leave the terminal constraints unchanged. For a perturbation that merely seeks to gain performance, it may well, and usually does, remain powerful. If now there are two control variables, one weak, the other strong, it may be that even though the strong variable is in the neighborhood of the optimal solution, it still dominates the perturbations that occur as it alternates about the ideal solution. In this case, the method may fail to converge the weak control variable at all, since the effect of the weaker control can be completely obscured by the noise level of the stronger variable. Further discussion on weighting functions is given in reference 3.

Control variable power: The control variable power is used as a basis for determining a weighting function that will ensure convergence with respect to the payoff function.

The change in the payoff function resulting from a perturbation in the control variable was given by equation 97

$$
\begin{equation*}
\mathrm{d} \varphi=\int_{t_{0}}^{T} \lambda_{\varphi \Omega}^{\prime} G \delta \bar{u} d t+\left(\lambda_{\varphi \Omega}^{\prime} \delta \overline{\mathrm{X}}\right)_{t}=t_{0} \tag{128}
\end{equation*}
$$

For a unit impulse perturbation in the control variables $\delta \bar{u}$, it was shown in a previous section that the response of the payoff function was

$$
\begin{equation*}
\delta(\mathrm{d} \varphi)=\lambda_{\varphi \Omega}^{\prime} G \tag{129}
\end{equation*}
$$

where again $\lambda_{\varphi}^{\prime}$ is a $1 \times \mathrm{n}$ matrix and G is an $n \times m$ matrix resulting in $\delta(\mathrm{d} \varphi)$ as a $1 \times \mathrm{m}$ matrix giving the response of the payoff function to a unit impulse of each of the m control variables. The elements of $\delta(\mathrm{d} 0)$ are referred to as the instantaneous payoff function sensitivites and will be designated as

$$
\begin{equation*}
\left(s_{u}^{\varphi}(t)\right)^{\prime}=\lambda_{\varphi \Omega}^{\prime} G \tag{130}
\end{equation*}
$$

These quantities measure the power of a control variable with respect to the payoff function, provided no restrictions are imposed on the terminal constraint changes.

The control variable perturbations are closely related to the instantaneous payoff sensitivities. For the case with no terminal constraints, the control perturbations are

$$
\begin{equation*}
\delta \bar{u}= \pm W^{-1} G^{\prime} \lambda_{\varphi \Omega} \sqrt{\frac{(\mathrm{dU})^{2}}{\mathrm{I}_{\varphi \varphi}}} \tag{131}
\end{equation*}
$$

or in terms of the instantaneous payoff sensitivities

$$
\begin{equation*}
\delta \bar{u}= \pm W^{-1} s_{u}^{\varphi} \sqrt{\frac{(\mathrm{dU})^{2}}{\mathrm{I}_{\varphi \varphi}}} \tag{132}
\end{equation*}
$$

Thus the optimum (steepest-ascent) perturbation varies directly with the inverse weighting matrix and the instantaneous sensitivities. If terminal constraints are considered in the problem, the control variable perturbations are

$$
\begin{align*}
& \text { (from equation } 116 \text { with fixed initial conditions) } \\
& \delta \bar{u}= \pm W^{-1}\left(s_{u}^{\varphi}-G^{\prime} \lambda_{\psi \Omega} I_{\psi \psi}^{-1} \mathrm{I} \psi \varphi\right)\left[(\mathrm{dU})^{2}-\mathrm{d} \bar{\psi}^{\prime} \mathrm{I}_{\psi \psi}^{-1} \mathrm{~d} \bar{\psi}\right]^{1 / 2} \tag{133}\\
& +W^{-1} G^{\prime} \lambda_{\psi \Omega} I_{\psi \psi}^{-1} d \bar{\psi}
\end{align*}
$$

The results above suggest an approach to the problem of false convergence. The problem is due to small perturbations in the weak control variable. The
inverse weighting matrix based on the control variable sensitivities can be used to amplify the effect of the weaker control variables. Using this type of weighting matrix, effectively the basis of optimization is changed from that perturbation having the greatest change in the payoff function to that perturbation having the greatest change in ω with all control variables being equally important and must the refore be perturbed by a reasonable amount.

The possibility of failing to converge to the desired constraints is more remote than that of failing to converge the payoff function. The dominant control variables for the payoff function are very often the dominant control variables for the constraints and hence will continue to be perturbed until the constraints are achieved. The terminal constraints may often be met without the optimum control history. The failure to meet the terminal constraints is immediately recognized whereas the optimum performance is verified only by starting from a considerably different nominal. Weighting matrices based on constraint sensitivities ($G^{\prime} \lambda_{6} 0$) and a mixed payoff and constraint sensitivity have been discussed by Hague in reference 3 but are not considered here.

The overall control variable power may be determined by integrating the instantaneous payoff sensitivities where the constraints are again ignored

$$
\begin{equation*}
s_{u}^{\varphi}=\int_{t_{0}}^{T}\left|s_{u}^{\varphi}(t)\right|-d t \tag{134}
\end{equation*}
$$

The elements of this column matrix are referred to as the integrated payoff sensitivities. Both the integrated payoff sensitivities and the instantaneous payoff sensitivities may be used as the basis for the weighting functions.

The instantaneous payoff sensitivities can be used to construct a weighting matrix to balance weak and strong subarcs for a given control variable. The integrated payoff sensitivities are used to obtain the weighting matrix to balance the power of the multiple control variables. The matrix is of the form

$$
\begin{equation*}
\left[w_{i i}\right]^{-1}=\frac{1}{m+1}\left[1+\frac{\sum_{j}^{m}{ }_{=1}^{m} S_{u_{j}}^{\varphi}}{S_{u_{i}}^{\varphi}}\right] \quad i=1,2, \ldots, m \tag{135}
\end{equation*}
$$

where the w_{ii} are the diagonal elements of a square matrix. Note that when all the control variables are equally powerful, i.e., $s \varphi_{u_{j}}=S^{\varphi}$

$$
\begin{equation*}
\left[w_{\mathrm{ii}}\right]^{-1}=\frac{1}{m+1}\left[1+\frac{\mathrm{mS}}{\mathrm{~S}^{\varphi}}\right]=\mathrm{I} \tag{136}
\end{equation*}
$$

the identity matrix.

This weighting matrix will ensure that each control variable is perturbed to the same order. A time-varying weighting matrix based on the instantaneous payoff sensitivity can have the form

$$
\begin{equation*}
\left[w_{i i}\right]^{-1}=\left[1+\frac{\stackrel{s}{u}_{u_{\max }}^{s_{u_{i}}^{\varphi}}}{\mathrm{u}_{\mathrm{i}}}\right] \tag{137}
\end{equation*}
$$

where ${ }_{\mathrm{u}_{\text {max }}}^{\boldsymbol{\varphi}}$ is the largest value of $\mathrm{s}{ }_{\mathrm{u}}$ along the trajectory. This weighting matrix was not automated in STOP since it was fclt that a satisfactory matrix could be input based on the knowledge of the problem by the user. This also allows the user to weight regions of the trajectory as his experience dictates.

Nominal Trajectory Generation

The steepest-ascent method begins with a nominal flight generated by an initial choice for the control variable history. Essentially, the only requirements on the nominal flight path are that it meet the stopping condition and be in the neighborhood of the optimum. A reasonable flight path can sometimes be generated open loop, that is, by inputing a table for the control variable history. In many cases, however, it is difficult and time consuming to determine a control table that will even meet the stopping condition. Therefore, capability is included to generate closed-loop trajectories for the nominal. The nominal guidance modes are shown in table I.

Table I: NOMINAL GUIDANCE OPTIONS

Mode	Guidance Type	Control Variable
	$\theta=\mathrm{f}(\mathrm{t})$	θ
1	$\alpha=0$	θ
2	$\alpha=\mathrm{f}(\mathrm{t})$	θ
3	$\gamma=\mathrm{f}(\mathrm{t})$	θ
4	$\dot{\gamma}=\mathrm{f}(\mathrm{t})$	θ
5	$\mathrm{~h}=\mathrm{f}(\mathrm{V})$	θ
6	$\mathrm{~h}=\mathrm{f}(\mathrm{M})$	θ
7	$\dot{\gamma}=0$	θ
8	$\dot{\gamma}=0$	θ
9	$\dot{\mathrm{~V}}=0$	θ
10	$\dot{\mathrm{M}}=0$	θ
11	$\dot{V}=0$	η
12	$\dot{\mathrm{M}}=0$	η

The basic method for determining the control variable in STOP is a table lookup of all the selected variables as functions of time. The function of the guidance mode is to override the tabulated input value for one of the control
variables. Therefore a control table must always be input with values for each control variable. The values of the control variables in the table which will be overriden may be a dummy value since it is not used. A brief discussion of several methods for obtaining angle of attack or throttling is given prior to discussing each guidance mode. The three schemes are: (1) determine angle of attack to produce a given $\dot{\gamma}$; (2) determine the angle of attack to give a required $\dot{\mathrm{V}}$; and (3) determine the throttling parameter to produce a given $\dot{\mathrm{V}}$.

Angle of attack from known $\dot{\gamma}$. - The equation of motion for flight path angle is given by

$$
\begin{align*}
\dot{\gamma}_{R}= & \frac{(T \sin \alpha+L) \cos \varphi}{m V_{R}}-\left(\frac{g}{V_{R}}-\frac{V_{R}}{r}\right) \cos \gamma_{R} \\
& +\frac{\omega^{2} r}{V_{R}} \cos \beta\left(\cos \beta \cos \gamma_{R}+\sin \beta \sin \gamma_{R} \sin \psi_{R}\right) \\
& +2 \omega \cos \beta \cos \psi_{R} \tag{138}
\end{align*}
$$

or for simplicity

$$
\begin{equation*}
\dot{\gamma}_{\mathrm{R}}=\frac{(\mathrm{T} \sin \alpha+\mathrm{L}) \cos \varphi}{m V_{R}}+G F \tag{139}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{GF}= & -\left(\frac{\mathrm{g}}{\mathrm{~V}_{\mathrm{R}}}-\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{r}}\right) \cos \gamma_{\mathrm{R}}+\frac{\omega^{2} \mathrm{r}}{\mathrm{~V}_{\mathrm{R}}} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}\right. \\
& \left.+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)+2 \omega \cos \beta \cos \psi_{\mathrm{R}} \tag{140}
\end{align*}
$$

If the angle of attack and bank angle are small so that $\alpha \doteq \sin \alpha$ and $\cos \varphi \doteq 1$, equation 139 can be written as

$$
\begin{equation*}
\dot{\gamma}=\frac{\left(\mathrm{T}+\mathrm{L}_{\alpha}\right) \alpha+\mathrm{L}_{\alpha=0}}{\mathrm{~m} \mathrm{~V}_{\mathrm{R}}}+G F \tag{141}
\end{equation*}
$$

For a given $\dot{\gamma}$, the angle of attack required is obtained by solving equation 141 for α,

$$
\begin{equation*}
\alpha=\frac{\left(\dot{\gamma}_{\text {req }}-\mathrm{GF}\right) \mathrm{m} \mathrm{~V}_{\mathrm{R}}-\mathrm{L}_{\alpha=0}}{\mathrm{~T}+\mathrm{L}_{\alpha}} \tag{142}
\end{equation*}
$$

Angle of attack for a known $\dot{\mathrm{V}}$. - The angle of attack for a required $\dot{\mathrm{V}}$ is based on equation 35

$$
\begin{align*}
\dot{\mathrm{V}}_{\mathrm{req}}= & \frac{\mathrm{T} \cos \alpha-\mathrm{D}}{\mathrm{~m}}-\mathrm{g} \sin \gamma_{\mathrm{R}} \\
& +\omega^{2} \mathrm{r} \cos \beta\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right) \tag{143}
\end{align*}
$$

or for simplicity

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{req}}=\frac{\mathrm{T} \cos \alpha-\mathrm{D}}{\mathrm{~m}}+\mathrm{VF} \tag{144}
\end{equation*}
$$

where

$$
\mathrm{VF}--\mathrm{g} \sin \gamma_{\mathrm{R}}+\omega^{2} \mathrm{r} \cos \beta\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right)(145)
$$

Making the assumption that $\cos \alpha \approx 1-\alpha^{2} / 2$ and expanding the drag in terms of angle of attack gives

$$
\begin{equation*}
\mathrm{D}=\mathrm{D}_{0}+\mathrm{D}_{1} \alpha+\mathrm{D}_{2} \alpha^{2} \tag{146}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{0} & =\left[C_{D_{0}}+\frac{\partial C_{D}}{\partial C_{L}^{2}}\left(C_{L_{\alpha}=0}-C_{L_{M}}\right)^{2}\right] q S \\
D_{1} & =2 \frac{\partial C_{D}}{\partial C_{L}{ }^{2}} C_{L_{\alpha}}\left(C_{L_{\alpha}=0}-C_{L_{M}}\right) q S \\
D_{2} & =\frac{\partial C_{D}}{\partial C_{L}{ }^{2}} C_{L_{\alpha}}^{2} q S
\end{aligned}
$$

Equation 144 can be written as

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{req}}=\frac{\mathrm{T}-\mathrm{D}_{0}-\mathrm{D}_{1} \alpha-\left(\frac{T}{2}+\mathrm{D}_{2}\right) \alpha^{2}}{m}+\mathrm{VF} \tag{147}
\end{equation*}
$$

For a given $\dot{\mathrm{V}}_{\mathrm{req}}$, the angle of attack can be obtained by solving the quadratic equation

$$
\begin{equation*}
\left.\left(\frac{T}{2}+\mathrm{D}_{2}\right) \alpha^{2}+\mathrm{D}_{1} \alpha+\stackrel{\circ}{\mathrm{V}}_{\text {req }}-\mathrm{VF}\right) \mathrm{m}-\left(\mathrm{T}-\mathrm{D}_{\mathrm{o}}\right)=0 \tag{148}
\end{equation*}
$$

Equation 148 yields two values for α. The larger value is used since it represents the usual case.

In some cases the \dot{V} required may be larger than the maximum $\dot{\mathrm{V}}$ that can be attained. In this case the best that can be done is to fly at the angle of attack
for maximum $\dot{\mathrm{V}}$. This indicates that the input $\mathrm{h}-\mathrm{V}$ or $\mathrm{h}-\mathrm{M}$ curves exceed the capability of the vehicle through adjusting \dot{V}. The angle of attack for maximum $\dot{\mathrm{V}}$ is obtained by setting

$$
\begin{equation*}
\frac{-D_{1}-2\left(\frac{T}{2}+D_{2}\right) \alpha}{m}=0 \tag{149}
\end{equation*}
$$

and solving for α,

$$
\begin{equation*}
\alpha=-\frac{\mathrm{D}_{1}}{2\left(\frac{\mathrm{~T}}{2}+\mathrm{D}_{2}\right)} \tag{150}
\end{equation*}
$$

Throttling for a known $\dot{\mathrm{V}}$. - The equation for thrust is given in general as

$$
\begin{equation*}
\mathrm{T}=\left(\mathrm{K}_{\mathrm{T}} \mathrm{~T}_{\text {vac }} \eta-\frac{\mathrm{P}_{\infty} \mathrm{A}_{\mathrm{e}}}{144}\right) \cos \delta \tag{151}
\end{equation*}
$$

Solving for η gives

$$
\begin{equation*}
\eta=\frac{\frac{T}{\cos \delta c}+\frac{P_{\infty} A_{e}}{144}}{\mathrm{~K}_{\mathrm{T}} \mathrm{~T}_{\mathrm{vac}}} \tag{152}
\end{equation*}
$$

where T is obtained by solving equation 144

$$
\begin{equation*}
\mathrm{T}=\frac{\left(\dot{\mathrm{V}}_{\mathrm{req}}-\mathrm{VF}\right) \mathrm{m}+\mathrm{D}}{\cos \alpha} \tag{153}
\end{equation*}
$$

Substituting into equation 152 gives

$$
\begin{equation*}
\eta=\frac{\frac{\left(\dot{\mathrm{V}}_{\mathrm{req}}-\mathrm{VF}\right) \mathrm{m}+\mathrm{D}}{\cos \alpha \cos \delta \mathrm{c}}+\frac{\mathrm{P}_{\infty} \mathrm{A}_{e}}{144}}{\mathrm{~K}_{\mathrm{T}} \mathrm{~T}_{\mathrm{vac}}} \tag{154}
\end{equation*}
$$

There are no approximations here since T is defined as a linear function of η.

Guidance Modes. - Each of the nominal guidance modes, given in table I, is detailed below. Modes 3 through 10 calculate the θ control variable from $\theta=\alpha+\gamma$.

Mode 0: This open-loop guidance table is used as it was input by the user.
Mode 1: The angle of attack is zero. The control variable θ is obtained by

$$
\begin{equation*}
\theta=\gamma \tag{155}
\end{equation*}
$$

Mode 2: The program interprets the first control variable input in the control table as angle of attack for the nominal trajectory only. The control variable θ is calculated as

$$
\begin{equation*}
\theta=\alpha_{\text {input }}+\gamma \tag{156}
\end{equation*}
$$

Mode 3: This mode calculates θ where the flight path angle is given as a function of time by a guidance table input, and uses the techniques of calculating the angle of attack required to fly a given $\dot{\gamma}$ (equation 142). The required $\dot{\gamma}$ is obtained by

$$
\begin{equation*}
\dot{\gamma}_{\mathrm{req}}=\dot{\gamma}_{\mathrm{I}}-\frac{\left(\gamma-\gamma_{\mathrm{I}}\right)}{\Delta \mathrm{t}} \tag{157}
\end{equation*}
$$

where $\quad \dot{\gamma}_{\text {I }}$ is the slope of the input γ with respect to time
γ is the state variable
γ_{I} is the desired flight path angle from the input table
Δt is an increment of time to correct for the γ error (currently $\Delta \mathrm{t}=1 \mathrm{sec})$

Mode 4: This mode calculates θ when the $\dot{\gamma}$ is given as a function of time by a guidance table input. The angle of attack is calculated by equation 142 from the $\dot{\gamma}$ in the guidance table.

Mode 5: This mode calculates θ where the altitude is given as a function of velocity by a guidance table input. The required $\stackrel{\circ}{\mathrm{V}}$ is obtained from

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{req}}=\frac{\mathrm{h}}{(\mathrm{dh} / \mathrm{dV})_{\mathrm{req}}} \tag{158}
\end{equation*}
$$

The desired h - V curve is flown by adjusting angle of attack to give the proper $\dot{\mathrm{V}}$. Inaccuracies in the numerical procedure may cause drift from the desired h - V. This is compensated by adding a feedback term as

$$
\begin{equation*}
\left(\frac{\mathrm{dh}}{\mathrm{dV}}\right)_{\text {req }}=\left(\frac{\mathrm{dh}}{\mathrm{dV}}\right)_{\text {input }} \pm \frac{\left(\mathrm{h}-\mathrm{h}_{\text {input }}\right)}{25} \tag{159}
\end{equation*}
$$

The + sign is used for descent phases and the - sign is used for ascent along the $\mathrm{h}-\mathrm{V}$ or $\mathrm{h}-\mathrm{M}$ curves. The angle of attack is obtained from equation 148 .

Mode 6: This mode calculates θ where altitude is given as a function of Mach number by a guidance table input. The slope $\mathrm{dh} / \mathrm{dM}$ is obtained from the input data. The technique of mode 5 is used where

$$
\begin{equation*}
\left(\frac{\mathrm{dh}}{\mathrm{dV}}\right)_{\text {input }}=\frac{1}{\mathrm{a}}\left(\frac{\mathrm{dh}}{\mathrm{dM}}\right)_{\text {input }} \tag{160}
\end{equation*}
$$

where a is the speed of sound along the flight path
Mode 7: This mode calculates θ which produces $\dot{\gamma}=0$. Equation 142, for calculating angle of attack for a given $\dot{\gamma}$, is used as in mode 4 but no input guidance table is required.

Mode 8: This mode calculates θ which will give $\gamma=0$. The method described under mode 3 is used but no guidance tables are input. If the flight path angle is not zero at the start of the phase, the feedback term causes the vehicle to pitch until $\gamma=0$.

Mode 9: This mode calculates θ for which the flight path acceleration (\dot{V}) is zero. Equation 148 is used to calculate the angle of attack for which $\dot{\mathrm{V}}=0$.

Mode 10: This mode calculates θ for which the Mach number is constant. The requirement of $\dot{M}=0$ is obtained through a $\dot{\mathrm{V}}_{\text {req }}$. Since $V=M$ a

$$
\begin{equation*}
\dot{\mathrm{V}}=\dot{\mathrm{M}} \mathrm{a}+\mathrm{M} \frac{\partial \mathrm{a}}{\partial \mathrm{~h}} \dot{\mathrm{~h}} \tag{161}
\end{equation*}
$$

which, since $\dot{M}=0$ for this mode, reduces to

$$
\begin{equation*}
\dot{\mathrm{V}}_{\text {req }}=\mathrm{M} \frac{\partial \mathrm{a}}{\partial \mathrm{~h}} \dot{\mathrm{~h}} \tag{162}
\end{equation*}
$$

The angle of attack is obtained from cquation 148.
Mode 11: This mode calculates the throttling (η) for constant velocity. The throttling is calculated from equation 154 for $\dot{\mathrm{V}}_{\text {req }}=0$.

Mode 12: This mode calculates the throttling (η) for constant Mach number. The throttling is calculated using equation 162 for $\dot{\mathrm{V}}_{\text {req }}$ and equation 154 .

Use of guidance options - A nominal trajectory generation relies on the user to input various modes that will take the vehicle to the stopping condition. The flight path is divided into various guidance phases, each controlled by one of the guidance modes described above. A phase ends upon reaching an input value of any of the 85 state, auxiliary, and control variables or time. The number of phases is limited to 12 , of which only 5 can use the input tables reserved for guidance modes. The tables required for modes 0 and 2 are not included in the five reserved tables. An example statement of a guidance phase buildup is:

Phase 1. Fly a prescribed $\mathrm{h}-\mathrm{V}$ (mode 5) to an altitude of 30,000 feet
Phase 2. Fly a $\dot{\gamma}=-0.2$ degree per second (mode 4) and decrease to a γ of 0 degree
Phase 3. Fly at constant velocity using throttling as the control variable (mode 11) to a range of 1000 nautical miles

Phase 4. Fly a $\dot{\gamma}=-0.2$ degree per second (mode 4) decreasing to a. γ of -1 degree

Phase 5. Fly a prescribed $h-V$ (mode 5) to a velocity of 500 feet per second.

The generation of nominal trajectories using modes 3 through 10 is limited to vehicles with aerodynamics given by

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}_{\alpha}=0}+\mathrm{C}_{\mathrm{L}_{\alpha}} \alpha \tag{163}\\
& \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}_{0}}+\frac{\partial \mathrm{C}_{\mathrm{D}}}{\partial \mathrm{C}_{\mathrm{L}}{ }^{2}}\left(\mathrm{C}_{\mathrm{L}}-\mathrm{C}_{\mathrm{L}_{\mathrm{M}}}\right)^{2} \tag{164}
\end{align*}
$$

or

$$
\begin{align*}
\mathrm{C}_{\mathrm{L}} & =\mathrm{C}_{\mathrm{L}_{\alpha}} \alpha \tag{165}\\
\mathrm{C}_{\mathrm{D}} & =\mathrm{C}_{\mathrm{D}_{0}}+\frac{\partial \mathrm{C}_{\mathrm{D}}}{\partial \mathrm{C}_{\mathrm{L}}^{2}} \mathrm{C}_{\mathrm{L}}^{2} \tag{166}
\end{align*}
$$

and thrust is independent of angle of attack. This restriction is made because the amount of computer time required to generate a nominal can be reduced by using the simpler representations given in equations 141 and 147.

Additional Options

Several options are included in STOP which permit the user to optimize special problems with fewer inputs than required in the usual sense. These are referred to as the gamma tilt, maximum payload, and circular satellite options. Each is discussed briefly below.

Gamma tilt. - The gamma tilt option is required for vertical takeoff (VTO) boosters. The tilt angle, $\gamma_{\text {tilt }}$, is input as a function of time in a table. Termination of the tilt maneuver is accomplished by a stage stopping time; consequently, the tilt maneuver must be counted as a stage. If flight path angle, γ, is selected as a free initial condition, then the perturbation on γ occurs at the end of tilt.

Circular satellite. - This option permits the usage of relative circular satellite velocity, $\mathrm{V}_{\mathrm{Cs}}^{\mathrm{R}}$, as a stopping condition or constraint. The option eliminates the calculations by the user as given below

$$
\begin{equation*}
V_{\operatorname{cs}_{R}}=\left[\left(r_{D} \omega \cos \beta-V_{\operatorname{cs}_{I}} \cos \psi_{I}\right)^{2}+\left(V_{\operatorname{cs}_{I}} \sin \psi_{I}\right)^{2}\right]^{1 / 2} \tag{167}
\end{equation*}
$$

where

$$
\mathrm{V}_{\mathrm{CSI}}=\sqrt{\frac{\mu}{\mathrm{r}_{\mathrm{D}}}}
$$

and

$$
\begin{aligned}
\mu & =14.081718 \times 10^{15} \\
r_{\mathrm{D}} & =\text { desired final radius }
\end{aligned}
$$

Maximum Payload. - If weight is the payoff variable and also a free initial condition, then the program will add payload and adjust the last-stage propellant weight at launch so that the burnout weight will be a maximum. A plot of payload versus last-stage propellant illustrates the manner in which this option operates (figure 11).

Last-Stage Propellant

Figure II. MAXIMUM PAYLOAD OPTION

Notice that when the fuel required for maximum payload is less than the maximum last-stage propellant, the true maximum payload is attainable. Otherwise, the payload limit is restricted by the amount of fuel the last stage may hold.

Conclusions and Recommendations

The computer program developed for the contract meets all requirements of the statement of work (ref. 1) and in addition has the capability to select the optimum initial conditions for a case with free initial conditions.

For multistage vehicles, the staging times must be input in the present program. It would be desirable, in a future modification, to have the optimal staging capability using the algebraic steepest-ascent method that allows staging on variables other than time. This option would permit optimization of coast and burn times to increase performance and give added flexibility to the program.

Multiple-vehicle capability is also desirable in a program of this type. This would enable optimization of intercept problems involving fighter aircraft, rendezvous between spacecraft and satellites, space rescue, etc.

PROGRAM USER'S MANUAL

Program Assumptions and Limitations

The assumptions and limitations that were made in the development of STOP are detailed in this section. The manner in which the assumptions affect the utility of the program are indicated. The effects of the limitations on the program are apparent.

Assumptions. - Simulation: The basic assumption for STOP is that the vehicle is represented as a point mass lifting body. This precludes any effect of the vehicle short-period dynamics on the optimum flight path. The results of the program in optimizing the flight path for a vehicle having high pitch rates have not been thoroughly substantiated. For aircraft and most boosters, the pitch rates do not affect the optimal results appreciably.

Earth model: The earth is assumed to be a rotating sphere with an inversesquare gravity field. The effect of the differences between the actual and assumed earth representation on the optimum flight path are small for the type of vehicles for which the program is designed.

Aerodynamics and propulsion: The aerodynamics and propulsion data for the vehicle can be input in several ways, depending on the availability of the data or type of vehicle. The most used aerodynamic representation for aircraft is the drag polar and lift as a linear function of angle of attack.

Generation of nominal flight paths: The generation of nominal flight paths by STOP for modes 3 through 10 assumes the drag polar and the linear lift representation and that thrust is not dependent on angle of attack. This restriction is not considered serious because this is the most common aerodynamic and thrust representation for aircraft. A method using more general aerodynamics and engine data can be formulated but the calculations require iterative procedures and are very time consuming.

Control variables: The control variables selected for STOP are pitch angle, bank angle, throttling, and wing sweep. The pitch angle is defined as $\theta=\gamma+\alpha$. The bank angle is used to perform out-of-plane maneuvers and assumes coordinated turns with no slideslip. Note that, for nonzero bank, θ is not a physical angle.

Payoff, constraints, and stopping conditions: The steepest-ascent procedure as formulated for STOP allows only state variables to be used as the payoff, constraint, and stopping functions. Enroute placards are formulated as auxiliary state variables for which terminal constraints are applied.

Atmosphere: The earth atmosphere is input as a single subroutine, using a calling sequence to transmit the data. Any subroutines using the same calling sequence can be used for the atmosphere calculation.

Staging: The trajectory can be staged only on time. Weight jettisons can be performed only at staging.

Limitations. - State variables: The number of state variables is limited to 15 . These may be selected from the 20 state variables defined by equations of motion and 20 state variables defined by enroute constraints. Altitude, flight path angle, and velocity must always be selected.

Control variables: The maximum number of control variables is four. Pitch angle, bank angle, throttling, and wing sweep are incorporated.

Constraints: A maximum of 13 constraints plus a stopping condition can be imposed on a problem. Of the 13, the number of enroute constraints is limited only by the number of data tables allowed for input of maximum and minimum placards. Twenty tables are reserved for the placards, which allows a maximum of 10 placards.

Stages: A maximum of 14 computer stages are permitted. The number of physical stages is not necessarily the same as the number of computer stages.

Data deck: A maximum of 1000 data cards are allowed for tables 1 through 30 plus 31 through 34 for any stage.

Equations of motion: The point mass equations of motion include the following limitations

$$
\begin{array}{cc}
\dot{\gamma}=0 & \text { if }\left|\mathrm{V}_{\mathrm{R}}\right|<100 \mathrm{fps} \text { or during a tilt maneuver } \\
\dot{\psi}=0 & \text { if }\left|\mathrm{V}_{\mathrm{R}}\right|<100 \mathrm{fps} \text { or } \\
& \left|90 \pm \gamma_{\mathrm{R}}\right|<0.1 \text { degrees or } \\
\dot{\lambda}=0 & \text { if }|90 \pm \beta|<0.1 \text { degrees. }
\end{array}
$$

Input Data Preparation

The following section presents a brief listing of the purpose of each of the nine (9) card sets that make up the Input Data Deck. This is followed by detailed instructions for preparing the data deck for a problem solution. Comments and notes are included to give the user further information to aid the setup. Prior to sending the data through the computer, it should be checked for the most common errors made in data preparation, as discussed under "Trouble Shooting."

Input Deck Summary - The Input Data Deck is composed of nine (9) card sets of which card sets 1 through 5 and 9 are required. Card sets 6,7 , and 8 may or may not be included in the Input Data Deck, depending on the problem to be solved.

Card Set	Number of Cards	Reference Pages	Purpose
1	1	53	Title
2	1	53	Print and Storage frequencies, type of solution, number of iterations and computer stages.
3	1-23	$54-63$ (See also figs. 12 and 13)	These cards, by use of control (NC) numbers, define the input options, output options, the state, auxiliary, and control variables as well as the use of a number of special-purpose options. Included in this selection are the equations of motion and the enroute placards.
4	3-5	64-65	Initial condition data including various physical constants, value of stopping condition, integration error limits, stopping condition tolerance, DUSQ, and initial values of the various state variables.
5	8-16	65-66	Computer stage dependent parameters such as: initial weight, final stage time (trajectory time), aerodynamic reference area, nozzle cant angle, total impulse correction factor, weight flow correction factor, inert weight flow and minimum allowable integration step.
6	0-13	66-67	Constraint dependent parameters; desired values and final tolerances for the various terminal constraints and enroute placards.
7	0-7	67	Free initial conditions, inputs maximum and minimum value and initial increment per iteration of each free initial condition.
8	0-12	67-68	Nominal guidance data; defines the various options used in the nominal trajectory generation for each stage.

Card Set	Number of Cards	Reference Pages	Purpose
9	2-58	68-76	All the tabulated input such as control function, weighting function, gamma tilt program, enroute placards, aerodynamic data (lift, drag, etc.), and engine data.
deck for a problem solution:			

Card Set 1

Title Card

Format A72
1 Card

Card 1

The contents of this card will be printed at the start of the case. It may contain any desired information in columns 1-72 or left blank, but it must be the first card in the data case.

Card Set 2

Controls
Format 1415
1 Card
Card 1

Column	Name	Description
1-5	IPRNT1	Printout of forward trajectory occurs every IPRNT1 integration steps.
6-10	IPRNT2	Printout of influence coefficients occurs every IPRNT2 integration steps during backward integration if $\mathrm{NC}(7)=1$.
11-15	ISTOR1	Storage of time, partials, and plot data occurs every ISTOR1 integration steps along forward trajectory. (Recommended value $=1$ for rockets, 2 for airbreathers.)
16-20	ISTOR2	Storage of impulse response functions occurs every ISTOR2 integration steps along backward trajectory. (Recommended value $=1$ for rockets, 2 for airbreathers.)
21-25	NARBY	```Degree of problem solution indicator \(=0\) Integrate nominal trajectory only and quit \(=1\) Integrate nominal trajectory and backward trajectory only and quit \(=2\) Iterate (NARBY \(=2\) required for optimization)```

Column	Name	Description
$26-30$	NITC	Maximum number of iterations
$31-35$	MSTAGE	Number of (computer) stages
		$(1 \leq$ MSTAGE $\leq 14)$

Card Set 3

NC Controls
Format 1415
1-23 Cards
Each card contains seven pairs of integers. The first integer is the index of the NC to be set and the second integer is the desired value of the NC. Every card must contain seven pairs of integers, except the last card. The NC's may be input in any order. The reading of the NC's is terminated by a blank field in columns 61-65 of the last card. Thus, if the number of NC's to be read is not a multiple of 7 , the last card will contain one to six pairs of integers. Otherwise, the last card will be blank. The explanation of the NC's is as follows. NC's not read in will be zero.

Description
$1 \mathrm{NC}(1)$
Plot paper option
$=0$ use 11×17 millimeter paper
$=1$ use $8-1 / 2 \times 11$ millimeter paper

2
NC(2) Not used
$3 \quad \mathrm{NC}(3) \quad$ Plot identification option
ORTHOMAT ($\mathrm{NC}(11)<0$)
$=0$ Use symbols
= 1 Use colors
SC $4020(\operatorname{NC}(11)>0)$
$=09 \times 9$ vellum only
$=1$ microfilm only
$=29 \times 9$ vellum only
$=39 \times 9$ vellum and microfilm plots

4
NC(4) Number of constraints + 2
(Count both terminal constraints and enroute placards)
$(2 \leq \mathrm{NC}(4) \leq 15)$

NC Index	Name	Description
5	NC(5)	Number of free initial conditions
		$0 \leq \mathrm{NC}(5) \leq 7$
		Note: If a tilt maneuver is selected $(\mathrm{NC}(14)=1)$, and if gamma is a free initial condition, then the free initial condition will be applied at the end of tilt (start of computer stage 2)
6	NC(6)	Maximum payload option
		$=0$ Ignore option $=1$ Last-stage propellant will be limited to the maximum last-stage propellant (MLSP, input in CARD SET 4). Weight must be a free initial condition for this option and $\mathrm{NC}(19)=1$ is required.
		Note: If $\mathrm{NC}(6)=0$ and $\mathrm{NC}(19)=1$, final weight is maximized by minimizing last-stage fuel.
7	NC(7)	Influence coefficient print option
		$=0$ Do not print influence coefficients $=1$ Print influence coefficients
		(Usual value $=0$)
8	NC(8)	Punch option
		$=0$ Do not punch control and restart tables used for last iteration $=1$ Punch control and restart tables used for last iteration (Usual value $=1$)
		Notes: 1) If a guidance mode is selected ($\mathrm{NC}(13)>0$) for a nominal trajectory (NARBY=0), then if $\mathrm{NC}(8)=1$, STOP will punch a control table (table 0), which may be used to generate the same trajectory open loop ($\mathrm{NC}(13)=0$).
		2) The control table punched by STOP is in octal (Format 6 Ф 12).
9	NC(9)	Extremal option
		$=1$ maximize payoff variable $=-1$ minimize payoff variable $=0$ solve boundary value problem

NC Index Name
Description
10 NC(10) Circular satellite option$=0$ Ignore option$=-1$ Stop on V_{CS} at desired final altitude. $\quad(\mathrm{NC}(18)=4$is required for this option
$=\mathrm{N}$ Nth constraint is $\mathrm{V}=\mathrm{V}_{\mathrm{cs}}$ This requires $\mathrm{NC}(\mathrm{N}+19)=4$
11 NC(11) Plot option
$=0$ Do no plot
$=\mathrm{N}$ Plot first, last, and every Nth iteration on SC 4020 plotter
$=-\mathrm{N}$ plot first, last, and every Nth iteration on ORTHOMAT plotter
Note: Only stored points are plotted.

NC(15) Skin friction option
$=0$ No CDF
$=1 \mathrm{H}_{\mathrm{ref}}, \quad \partial \mathrm{C}_{\mathrm{D}} / \partial \mathrm{H}=\mathrm{f}(\mathrm{M})$. This requires that table 23 be input

NC(16) Control table input option
$=0$ input decimal table
$=1$ input octal table
Note: $\mathrm{NC}(16)=1$ is required to accept tables punched by the program

17	NC(17)	Restart table option $=0$ No restart table (use for nominal trajectory) $=1$ Input restart table after table 0 Note: A restart table is obtained whenever a control variable table is generated by the program as a result of previous iterations. See punched card output discussion.
18	NC(18)	State variable index for stopping condition (figure 12, column 2). See input instructions check list.
19	NC(19)	State variable index for payoff quantity (figure 12, column 2)
20	NC(20)	State variable index for first constraint (figure 12, column 2)
21	NC (21)	State variable index for second constraint (figure 12, column 2)
',	',	
'	1	
1	1	
32	NC (32)	State variable index for 13th constraints (figure 12, column 2)
		Note: Enroute placards are state variables and count as constraints. See figure 12 for list of state variables.
33	NC(33)	Engine option for stage 1
34	$\mathrm{NC}(34)$	Engine option for stage 2
,	,	
46	NC(46)	Engine option for stage 14
		Note: The engine option for each stage is input as a twodigit number. The left digit specifies the type of thrust table as follows:

VARIABLE TYPE	VARIABLE INDEX	NC INDEX	$\begin{aligned} & \text { PLOT } \\ & \text { INDEX } \end{aligned}$	FORTRAN NAME	SYMBOL	DESCRIPTION	UNITS
STATE EQUATION OF MOTION)	1	121	1	X(Kl)	W	WEIGHT	
	2	122	2	X(K2)	H	ALTITUDE	
	3	123	3	X(K3)	γ	RELATIVE FLIGHT PATH ANGLE	
	4	124	4	X(K4)	v	RELATIVE VELOCITY	
	5	125	5	X(K5)	β	LATITUDE ANGLE	
	6	126	6	X(K6)	ψR	RELATIVE HEADING ANGLE	
	7	127	7	X(K7)	λ	LONGITUDE ANGLE	
	8	128	8	X(K8)	TD	DUMMY TIME	
	9	129	9	$X(\mathrm{~K} 9)$	RNG	PATH RANGE ALONG EARTH'S SURFACE	
	10	130	10	X(K10)	AHI	AERODYNAMIC HEATING INTEGRAL	
	11	131	11	X(K11)	ΔV	IDEAL RELATIVE DELTA VELOCITY	
	12	132	12	X(K12)	GL	GRAVITY LOSS	
	13	133	13	X(K13)	DL	DRAG LOSS	
	14	134	14	X(K14)	TVL	THRUST VECTORING LOSS	
	15	135	15	X(K15)	ER	RELATIVE SPECIFIC ENERGY	
	16	136	16	X \times K16)			
	17	137 138	17	X X (K17 X		AVAILABLE FOR EXPANSION	
	18 19	138 139	18 19	X(K18) X(K19)		available for expansion NOT DEFINED	
	19 20	139 140	19	X(K19) X(K20))	
STATE	21	141	21	X(K21)	$\theta *$	PITCH ANGLE PLACARD $=\mathrm{F}(\mathrm{t}$)	
(ENROUTE	22	142	22	X(K22)	${ }^{\text {¢ }}$	BANK ANGLE PLACARD $=F(\mathrm{t})$	
PLACARDI	23	143	23	X(K23)	$\eta *$	THROTTLE PLACARD $=F(H, M)$	
	24	144	24	X(K24)	Λ^{*}	WING SWEEP PLACARD $=F(H, M)$	
	25	145	25	X(K25)	$\alpha *$	ANGLE OF ATTACK PLACARD $=F(H, M)$	
	26	146	26	X(K26)		NOT DEFINED	
	27	147	27	X(K27)	HD*	ALTITUDE RATE PLACARD $=F(t)$	
	28	148	28	X(K28)	Q*	DYNAMIC PRESSURE PLACARD $=F(t)$	
	29	149	29	X(K29)	Q*	DYNAMIC PRESSURE PLACARD $=F(M)$	
	30	150	30	X(K30)	Q ${ }^{*}$	Q \propto PLACARD = F(M)	
	31	151	31	X(K31)	TEMT*	TOTAL TEMPERATURE PLACARD $=F(t)$	
	32	152	32	X(K32)	N^{*}	NORMAL LOAD FACTOR PLACARD $=$ F(H,M)	
	33	153	33	X(K33)	RPA*	RESULTANT PHYSIOLOGICAL ACCEL. PLACARD $=F(t)$	
	34	154	34	X(K34)	${ }^{+}$	ALTITUDE PLACARD $=F(M)$	
	35	155	35	X(K35)	Δp^{*}	SONIC BOOM OVERPRESSURE PLACARD $=F(\lambda, \beta)$	
	36	156	36	X(K36)	M^{*}	MACH NUMBER PLACARD $=F(H)$	
	37	157	37	X(K37)		NOT DEFINED	
	38 39	158 159	38 39	X(K38) X(K39) X	$\gamma *$	GAMMA PLACARD $=F(H, M)$	
t	39 40	159 160	39 40	X(K39) X(K40)		NOT DEFINED NOT DEFINED	

FIGURE 12: STATE VARIABLES

Thrust Option

Digit
0

1

Coast (no thrust table)
Vacuum thrust (lb), nozzle exit area (in ${ }^{2}$), vacuum specific impulse (sec) $=\mathrm{F}$ (stage time). Table format 1 for 3 dependent variables

Vacuum thrust (lb), nozzle exit area (in ${ }^{2}$), vacuum specific impulse (sec) $=\mathrm{F}$ (total time). Table format 1 for 3 dependent variables
\(\left.\begin{array}{rl}\mathrm{T} \& =\mathrm{F}(\alpha, \mathrm{H}, \mathrm{V})

\mathrm{T} \& =\mathrm{F}(\alpha, \mathrm{H}, \mathrm{M})

\mathrm{T} \& =\mathrm{F}(\alpha, \mathrm{M}, \mathrm{H})

\mathrm{T} / \mathrm{P} \& =\mathrm{F}(\alpha, \mathrm{H}, \mathrm{M})

\mathrm{CT} \& =\mathrm{F}(\alpha, \mathrm{H}, \mathrm{V})

\mathrm{CT} \& =\mathrm{F}(\alpha, \mathrm{H}, \mathrm{M})

\mathrm{CT} \& =\mathrm{F}(\alpha, \mathrm{M}, \mathrm{H})\end{array}\right\}\)| |
| :--- |
| Table format 2 for one, two, or |
| three independent variables |

Note: (1) P is atmospheric pressure for option 6 ; (2) For thrust options 3 through 9, the number of engines is input in columns 11 to 20 on the first data card in table 31. If this field is left blank, STOP will assume one engine. The thrust from table 31 (and fuel flow from table 32 if a WDOT option is selected) will then be multiplied by the number of engines.

The right digit specifies the type of fuel flow table as follows:

Fuel Flow Option

Fuel Flow Table

Coast (no fuel flow table)
$\mathrm{WDOT}=\mathrm{F}(\mathrm{H}, \mathrm{M}, \eta)$
$\mathrm{SFC}=\mathrm{F}(\eta, \mathrm{H}, \mathrm{V})$
Table format 2 for one, two, or
$\mathrm{SFC}=\mathrm{F}(\alpha, \mathrm{H}, \mathrm{V})$

Digit
Fuel Flow Table (Continued)

4

5
6
7
8

9

NC Value

NC Index

47	$\mathrm{NC}(47)$
48	$\mathrm{NC}(48)$
\vdots	\vdots
60	$\mathrm{NC}(60)$

Name

NC(60)

3
$\left.\begin{array}{rl}\text { WDOT } & =\mathrm{F}(\eta, \mathrm{H}, \mathrm{V}) \\ \text { WDOT } / \mathrm{P} & =\mathrm{F}(\mathrm{H}, \mathrm{M}, \eta) \\ \mathrm{SFC} & =\mathrm{F}(\eta, \mathrm{M}, \mathrm{H}) \\ \text { SFC } & =\mathrm{F}(\alpha, \mathrm{M}, \mathrm{H}) \\ \text { WDOT } & =\mathrm{F}(\eta, \mathrm{M}, \mathrm{H}) \\ \text { WDOT } & =\mathrm{F}(\alpha, \mathrm{M}, \mathrm{H})\end{array}\right\} \begin{aligned} & \\ & \text { Table format } 2 \text { for one, two, } \\ & \text { or three independent variables }\end{aligned}$
Note: P is atmospheric pressure for option 5

Description

Aerodynamics option for stage 1
Aerodynamics option for stage 2

Aerodynamics option for stage 14
Note: The aerodynamics options available are given below and are identified by the value assigned to $\mathrm{NC}(47)-\mathrm{NC}(60)$.

Aerodynamic Option

Aerodynamic Table

Vacuum (no aerodynamic table)
$C D=F(H, M, \alpha)$
$\mathrm{CL}=\mathrm{F}(\mathrm{H}, \mathrm{M}, \alpha)$
$C D=F(\Lambda, M, \alpha)$
$C L=F(\Lambda, M, \alpha)$
$\mathrm{CD}_{\mathrm{O}}, \partial \mathrm{CD} / \partial \mathrm{CL}^{2}, \partial \mathrm{CL} / \partial \alpha=\mathrm{F}(\mathrm{M})$
$\mathrm{CA}, \partial \mathrm{CN} / \partial \alpha, \partial \mathrm{CN} / \partial \alpha^{3}=\mathrm{F}(\mathrm{M})$
$\mathrm{CD}_{\mathrm{O}}, \partial \mathrm{CD} / \partial \mathrm{CL}^{2}, \mathrm{CL}_{\min }^{\operatorname{mrag}}, \partial \mathrm{CL} / \partial \alpha, \mathrm{CL} \alpha_{\alpha=0}=\mathrm{F}(\Lambda, \mathrm{M})$
Note: (1) Options 1 and 2 use table format 2 for one, two, or three independent variables; (2) Options 1 and 2 require two tables - the first is a CD table; the second, a CL table;
(3) Options 3 and 4 are table format 1 for three dependent variables; (4) Option 5 uses table format 3 for two independent and five dependent variables; (5) CD_{o} in option 5 is $\mathrm{CD}_{\min }$; (6) All angles and slopes are in degrees.
61 NC(61) Index of dependent variable for 1st plot
626364!
Index of dependent variable for 7th plot
$\mathrm{NC}(74) \quad$ Index of independent variable for 7th plot
Note: See figures 12 and 13 for plot index
NC (82) AK (2) print option
$=0$ Do not print AK (2)
$=1$ Print AK (2)

VARIABLE TYPE	VARIABLE INDEX	NC INDEX	PLOT index	FORTRAN NAME	SYMBOL	DESCRIPTION	UNITS
	1	81	41	AK(1)	T	THRUST	LB
	2	82	42	AK(2)	L	LIFT	LB
	3	83	43	AK(3)	0	DRAG	LB
	4	84	44	AK(4)	Q	DYNAMIC PRESSURE	PSF
	5	85	45	AK(5)	M	MACH NUMBER	-
	6	86	46	AK(6)	GCR	GREAT CIRCLE RANGE	N MI
	7	87	47	AK(7)	WDOT	WEIGHT FLOW	LBISEC
	8	88	48	AK(8)	VI	INERTIAL VELOCITY	FPS
	9	89	49	AK(9)	Y1	INERTIAL FLIGHT PATH ANGLE	DEG
	10	90	50	AKC10月	$\psi 1$	INERTIAL HEADING ANGLE	DEG
	11	91	51	AK(11)	α	ANGLE OF ATTACK	DEG.
	12	92	52	AK(12)	TEMP	TOTAL TEMPERATURE	${ }^{\circ} \mathrm{R}$
	13	93	53	AK(13)	VA	SPEED OF SOUND	FPS
	14	94	54	AK(14)	P	AMBIENT PRESSURE	PSF
	15	95	55	AK(15)	β	AMBIENT DENSITY	SLUG/FT ${ }^{2}$
	16	96	56	AK(16)	TEM	AMBIENT TEMPERATURE	
	17	97	57	AK(17)	WM	WEIGHT (METRIC)	NEWTONS
	18	98	58	AK(18)	HM	ALTITUDE (METRIC)	METERS
	19	99	59	AK(19)	RPA	RESULTANT PHYSIOLOGICAL ACCELERATION	FT/SEC ${ }^{2}$
	20	100	60	AK(20)	N	NORMAL LOAD FACTOR	PSE-DEC
	21	101	61	AK(21)	Qo	DYNAMIC PRESSURE TIMES ANGLE OF ATTACK	PSF-DEG FTSEC
	22	102	62	AK(22)	G	LOCAL GRAVITY	FISEC ${ }^{\text {FT }}$
	23	103	63	AK(23)	$\stackrel{R}{R}$	RADIUS VECTOR	
	24	104	64	AK(24)	$\Delta \mathrm{P}$	SONIC BOOM OVERPRESURE LIFT COFFFICIENT	PSF PSF
	25	105 106	65	AK(25)	CL	LIFT COEFFICIENT DRAG COFFFICIENT	PSF
	26	106	66	AK(26) AK(27)	CD	LIFT/ORAG RATIO	
	27	107 108	67	AK(27) AK(28)	SFC	SPECIFIC FUEL CONSUMPTION	1/SEC
	29	109	69	AK(29)	VM	RELATIVE VELOCITY (METRIC)	M/SEC
	30	110	70	AK(30)	TM	THRUST (METRIC)	NEWTONS
	31	111	71	AK(31)	LM	LIFT (METRIC)	NEWTONS
	32	112	72	AK(32)	DM	DRAG (METRICI	NEWTONS
	33	113	73	AK(33)	QM	DYNAMIC PRESSURE (METRIC)	NWTS/M ${ }^{2}$
	34	114	74	AK(34)	WDOTM	WEIGHT FLOW (METRIC)	KGFISEC
	35	115	75	AK(35)	VIM	INERTIAL VELOCITY (METRIC)	M/SEC 2
	36	116	76	AK(36)	QaM	DYNAM IC PRES SURE TIMES ANGLE OF ATTACK (METRICI	NWT-RAD/M ${ }^{2}$
	37	117	77	AK(37)	$\triangle \mathrm{PM}$	SONIC BOOM OVER PRESSURE (METRIC)	NWTS/M ${ }^{2}$
	38	118	78	AK(38)	SFCM	SPECIFIC FUEL CONSUMPTION (METRICI	KFGINWT-SEC
	39	119	79	AK(39)		3 NOT DEFINED	
	40	120	80	AK(40)		PNOT derined	
CONTROL	1	77	81	U(11)	${ }^{\boldsymbol{\theta}}$	PITCH ANGLE	DEG
	2	78	82	U(12)	ϕ	BANK ANGLE	DEG
	3	79	83	U(13)	η	ENGINE THROTTLE	-
	4	80	84	U(14)	Ω	WING SWEEP ANGLE	DEG
	-	-	85	T	(t)	TIME	SEC

FIGURE 13 AUXILIARY, CONTROL AND INDEPENDENT VARIABLES

NC Index	Name	Description
120	NC (120)	AK (40) print option $\begin{aligned} & =0 \text { Do not print AK (40) } \\ & =1 \text { Print AK }(40) \end{aligned}$
121	NC (121)	$\begin{aligned} & X(1) \text { state variable option } \\ & =0 \text { Do not integrate } X(1) \\ & =1 \text { Integrate } X(1) \end{aligned}$
122	NC (122)	$\begin{aligned} & X(2) \text { state variable option } \\ & =0 \text { Do not integrate } X(2) \\ & =1 \text { Integrate } X(2) \end{aligned}$
140	NC (140)	$\begin{aligned} & X(20) \text { state variable option } \\ & =0 \text { Do not integrate } X(20) \\ & =1 \text { Integrate } X(20) \end{aligned}$
141	NC(141)	X (21) state variable option $=-1^{\circ}$ Observe minimum placard $=0$ Ignore placard = 1 Observe maximum placard $=2$ Observe both maximum and minimum placards
142	NC(142)	$X(22)$ state variable option $=-1$ Observe minimum placard $=0$ Ignore placard $=1$ Obscrve maximum placard $=2$ Observe both maximum and minimum placards
,	'	
160	NC(160)	X (40) state variable option
		$\begin{aligned} & =-1 \text { Observe minimum placard } \\ & =0 \text { Ignore placard } \\ & =1 \text { Observe maximum placard } \\ & =2 \text { Observe both maximum and minimum placards } \end{aligned}$
		Note: (1) Figures 12 and 13 list state variables and AK's; (2) X (2), X (3), and X (4) must always be selected; (3) Two tables are reserved for each placard in the order selected, beginning with table 3 ; (4) Two tables must be input for a placard only if table format 2 is required and both max and min are to be observed. Otherwise, one table is required; (5) For table format 2, the odd numbered table is reserved for the min placard, the even numbered table for the max placard; (6) For table format 1, both limits are always input in the odd numbered table with min placard first; (7) A maximum of 15 state variables may be used.

Card Set 4

Initial Condition Data
Format 7F10
3-5 Cards
Card 1

Column	Name	Description
$1-10$	XSTP	Desired value of stopping condition (checked in last stage only)
$11-20$	GR	Earth gravitational constant times 10^{-15} (Recommended value $=14.081718)$
$21-30$	RO	Earth radius (feet) (Recommended value $=20,902,992)$ $31-40$
OMEGA	Earth rotational rate ($\mathrm{rad} / \mathrm{sec}$) times 10^{4} (Recommended value $=0.72921152)$	
$41-50$	GO	Sea level gravity $\left(\mathrm{ft} / \mathrm{sec}^{2}\right)($ Recommended value $=32.174)$

Card 2
1-10 DUSQ Initial value of $\int_{t_{0}}^{T} \delta \bar{u}^{\prime} W \delta \bar{u} d t \quad$ (may be left blank)
11-20 FINNER Forward trajectory integration error limit for variable step integration (Recommended value $=18$ for rockets, 15 for airbreathers)
21-30 BINNER Backward trajectory integration error limit for variable step integration (Recommended value $=18$ for rockets, 15 for airbreathers)

Note: FINNER and BINNER are in some respect the number of binary bits of accuracy to be held during integration. Eighteen yields four to five significant figures of accuracy. Changing FINNER and BINNER by 3 amounted to changing accuracy by about 1 significant figure. Decreasing FINNER and BINNER is the direction of decreasing accuracy and decreasing computer time

31-40 EPSLN Maximum allowable tolerance in stopping condition. (Usually EPSLN should be adjusted to give six to eight significant digits for XSTP. For example, if XSTP = 25,000 , EPSLN should be about 0.01 . If $\mathrm{XSTP}=0$, EPSLN should be about 0.000001)

solumn	Name	Description
11-50	MLSP	Maximum last-stage propellant (A value required if $\mathrm{NC}(6)=1$)
31-60	TSTART	Trajectory starting time (Usual value $=0$)
31-70	L	Reference length for sonic boom calculations
Sard 3		
Jolumn	Name	Description
i-10	XO (1)	Initial value of first state variable selected from figure 12
i 1-20	XO (2)	Initial value of second state variable selected from figure 12
31-70	XO (7)	Initial value of seventh state variable selected from figure 12 (Additional cards are required if more than seven state variables are selected.)
		Note: These values are input in ascending variable index order (as selected from figure 12) with no blank fields.

Card Set 5

Stage-Dependent Parameters
 Format 7F10
 8-16 Cards

Each card subset contains the stage-dependent parameter values in fields of 10 ; i.e., columns 1 to 10 , value for stage $1 ; 11$ to 20 , value for stage 2 , etc. Two cards are required in each subset if MSTAGE >7.

Card Subset

Parameters

Name
WO (NSTAGE) Initial weight (lb) of each stage Note: (1) A positive value will be used as an initial weight; (2) A zero value will use the end weight of the previous stage at the start weight of the stage; (3) A negative value will use the end weight of the previous stage minus the input value for the stage.

TSTP (NSTAGE) Stopping trajectory time for each stage Note: The last stage does not stop on time (except dummy time if it is a state variable) unless the trajectory exceeds the input stopping time for the last stage, in which case the run will be aborted.

Card Subset

Name

3 SREF (NSTAGE) Aerodynamic reference area (ft^{2}) for each stage
4 DELC (NSTAGE) Nozzle cant angle (deg) for each stage measured from body centerline

Parameters

from body centerline

XKT (NSTAGE) Total impulse correction factor (XKT) for each stage Note: These values may be used to correct total impulse or each stage since

$$
\mathrm{I}_{\mathrm{TOT}}=\int_{\text {TSTART }}^{\mathrm{T}_{\mathrm{BO}}}(\mathrm{XKT})\left(\mathrm{T}_{\mathrm{VAC}}\right) \mathrm{dt}
$$

(Usually use XKT's = 1)
XKM (NSTAGE) Weight flow correction factor (XKM) for each stage Note: These values may be used to correct the final weight of each stage since
$W_{\text {final }}=W_{\text {initial }}-\int_{\text {TSTART }}^{T_{B O}}[(X K M)(W D O T)$

- WDOT $\left._{\text {inerts }}\right] d t$
(Usually use XKM's = 1)
WDOTI (NSTAGE) Inert weight flow (lb/sec) for each stage
DTMIN (NSTAGE) Minimum allowable integration step for each stage (Recommended Value $=0.1$ second)

Card Set 6

Card 1

1-10 PSI

11-20 DPSI

Card 2

$1-10$	PSI	Desired value for second terminal constraint
$11-20$	DPSI	Desired final tolerance for second terminal constraint

Card Set 6 (Continued)

value of the constraints and the tolerances must be ordered as selected by the $\mathrm{NC}(20)$ - $\mathrm{NC}(32)$ controls. For instance, if $\mathrm{NC}(20)=5$, then the first terminal constraint will be latitude as indicated in figure 12; (3) One card required for each constraint.

Card Set 7

Free Initial Conditions
Format 110, 3 F10
0-7 Cards
One card is input for each desired variable initial condition as follows:

Guidance Mode Options

Mode	Descriptions	Table Format
0	$\theta=\mathrm{f}(\mathrm{t})$, open loop	1
1	$\alpha=0$, calculate θ	
2	$\boldsymbol{\alpha}=\mathrm{f}(\mathrm{t})$, calculate θ	1
3	$\boldsymbol{\gamma}=\mathrm{f}(\mathrm{t})$, calculate $\boldsymbol{\theta}$	1
4	$\dot{\boldsymbol{\gamma}}=\mathrm{f}(\mathrm{t})$, calculate $\boldsymbol{\theta}$	1
5	$\mathrm{h}=\mathrm{f}(\mathrm{V})$, calculate $\boldsymbol{\theta}$	1
6	$\mathrm{h}=\mathrm{f}(\mathrm{M})$, calculate θ	1
7	$\dot{\gamma}=0$, calculate θ	
8	$\boldsymbol{\gamma}=0$, calculate $\boldsymbol{\theta}$	
9	$\dot{\mathrm{V}}=0$, calculate θ	
10	$\mathrm{M}=0$, calculate θ	
11	$\dot{\mathrm{V}}=0$, calculate η	
12	$\stackrel{M}{M}=0$, calculate $\boldsymbol{\eta}$	

(2) The maximum number of phases is limited to 12 , of which only five may be phases requiring tables; (3) Modes 0 and 2 use the input control variable table (table 0) and therefore are not included in the five reserved guidance tables (Note 2);
(4) TMIN and TMAX are input only for MODES 11 and 12;
(5) If SWVAL occurs before XSTP on the last phase, the remainder of the trajectory will be flown open loop using table 0 ; (6) The trajectory will always stop on XSTP; (7) The guidance mode option is for the nominal trajectory only. If NARBY $=2$, STOP will iterate from the nominal in the usual open loop mode; (8) This card set will be missing if $\mathrm{NC}(13)=0$; (9) Aerodynamic option 3 or 5 must be used when modes 3 through 10 are used; (10) For modes 5 and 6, MODE is input as a positive number for ascent or negative for descent. In either case, the $\mathrm{H}-\mathrm{M}$ or $\mathrm{H}-\mathrm{V}$ table must be monotonically increasing in the independent variable.

Card Set 9

Tables
Format 2I5, A60/(7F10)
2-58 Tables
Every table must begin with a title card as follows:
Column Description
1-5 Table number
6-10 Number of data cards in the table (do not count this card)
11-70 Any desired information

Card Set 9 (Continued)

Input Data Tables

Table
Number

Control function table (U)
Table format 1, NU dependent variables vs time where NU is the number of control variables selected. This table must always be present as the first table and will not be extrapolated.

Note: Restart table follows table 0 if $\mathrm{NC}(17)=1$ and is also assigned as table 0 . Weighting function table (W^{-1} diagonal elements). Table format 1 , NU, dependent variables vs time.' This table must always be present as the second table and allows the user to aid in assigning the value of DUSQ along the trajectory and among the control variables. A zero value will cause no change in a U, and a 1 . will allow the full change determined by the gradient. As an example, it is a good idea to restrict pitch angle changes during a tilt maneuver and during the low-speed portion of a VTO trajectory. For instance, this table might be as follows for a VTO liquid rocket tilting at 8 seconds after launch (θ control):
$0.0 . \quad 15 . \quad 0 . \quad 30 . \quad 1 . \quad 10000$.
1.

Gamma tilt table
Table format 1,1 dependent variable vs time (Used only if NC $(14)=1$)
First table for 1st enroute placard (Format specified by card set 3 and figure 12)

Second table for 1st enroute placard

First table for 10th enroute placard
Second table for 10th enroute placard
Skin friction drag table (required if NC(15) $=1$) $H_{R E F}, \frac{\Delta C D}{H-H_{R E F}}=F(M)$
Table format 1, 2 dependent variables vs Mach number
First guidance table (Format specified by card set 8)
Second guidance table

Description

Last guidance table

Lateral cutoff distance (required if $\mathrm{NC}(75)>1$), $\mathrm{YCO}=\mathrm{F}(\mathrm{M}, \mathrm{H})$ Table Format 2 Sunic boom table (required if NC(104) or NC(135) $=1$
$\Delta \mathrm{PJ}=\mathrm{F}(\mathrm{H}, \mathrm{M}, \mathrm{DENOM})$ Table Format ${ }^{-2}$
where:

$$
\Delta \mathrm{PJ}=(\Delta \mathrm{P})\left(\frac{\mathrm{H}}{\mathrm{~L}}\right)^{3 / 4} / \mathrm{K}_{\mathrm{R}} \beta^{1 / 4} \mathrm{P}_{\mathrm{ref}}
$$

$$
\Delta \mathrm{P}=\text { Overpressure } \sim \mathrm{psf}
$$

$$
\mathrm{K}_{\mathrm{R}}=\text { Sonic boom constant } \approx 1.9
$$

$$
P_{r e f}=\sqrt{P_{o}^{* P}}
$$

$$
\beta=\sqrt{\mathrm{M}^{2}-1}
$$

$$
\text { DENOM }=\frac{\beta}{2} \mathrm{C}_{\mathrm{L}} \frac{\mathrm{~S}}{\mathrm{~L}^{2}}
$$

1st engine table for stage 1
Note: Engine options 10 and 20 require only one table
2nd engine table for stage 1
1st aerodynamics table for stage 1
Note: Aero options 3, 4, and 5 require only one table
2nd aerodynamics table for stage 1
1 st engine table for stage 2
2nd engine table for stage 2
1st aerodynamics table for stage 2
2nd aerodynamics table for stage 2
(Repeat tables 31 through 34 for each stage)
Note: (1) Some or all of tables 2 through 34 may be missing, depending on the options selected from card set 3 ; (2) The first-stage.dependent table (31-34) of each stage must be preceded by a card with the word STG in columns 1-3 (remaining columns must be blank); (3). The laststage dependent table for the last stage must be followed by a card with the word END in columns 1-3 (remaining columns must be blank); (4) The STG cards are required even for stages with no tables; (5) All tables except table 0 may be extrapolated; (6) The total number of data cards for tables 1 through $30+31$ through 34 for any stage is limited to 1000 .

Card Set 9 (Continued)

Three formats are available for data table input. The table lookup routines use linear interpolation and will extrapolate, although the extrapolation feature should be avoided if possible.
Table Format 1
1 Independent by $1,2,3,4$, or 5 Dependent
$\mathrm{X}=$ independent variable
$Y_{i}=$ dependent variables
NDV $=$ number of dependent variables,
$X, Y_{1}, Y_{2},--Y_{N D V}, X, Y_{1}, Y_{2},--Y_{N D V}, X,--$
7 entries per card
Figure 14 shows an example for two dependent variables

Table Format 2

1, 2, or 3 Independent by 1 Dependent

Cardset 1

Column
 Name
 Descriplion

1-10 NPL Number of planes (may = 1)
11-20 ENG Number of engines (used only for thrust options 3-9)

Cardset 2 (All data for first plane)
Card Subset 1

Column	Name	Description
1-10	X1	Value of the first plane ($\mathrm{X} 1=0$, if only one plane)
11-20	NCV	Number of curves on first plane (may $=1$)
Card Subset 2 (All data for first curve)		
Card 1		
Column	Name	Description
1-10	X 2	Value of the first curve ($\mathrm{X} 2=0$, if only one curve)
11-20	NPT	Number of data points on first curve (must be >1)
21-30	X3	Value of the 1st point
31-40	Y	Value of the dependent variable
41-50	X3	Value of the 2nd point
51-60	Y	Value of the dependent variable
61-70	X3	Value of the 3rd point

Card Set 9 (Continued)

Card Subset 2

Card 2
$1-10$
$11-20$$\quad \mathrm{Y} 3 \quad$ Value of the dependent variable

Card Subset 3 (All data for the 2nd curve)
Same format as card subset 2.
Card subsets continue until all curves on the first plane are input.
The next plane is input in the same manner, beginning with card set 2.
Note: (1) Each plane begins with a new card; (2) Each curve begins with a new card; (3) All data in the table is input floating point (Every value must have a decimal point); (4) The table lookup routine uses linear interpolation and will extrapolate linearly in all directions.
Figure 15 shows an example for Table Format 2.

Table Format $3 \quad 2$ Independent by 5 Dependent

This format is used only for the aerodynamics option 5 as follows:
Cardset 1

Column		
$1-10$	Name	Description
NSWP	Number of constant sweep curves (may be 1)	

Cardset 2 (All data for first sweep)
Card Subset 1

Column	Name
$1-10$	S1
$11-20$	NM1

Description

$11-20$ NMI
Number of Mach number points on first curve
Card Subset 2
Card 1

Column	Name	Description $1-10$
M1	Value of first Mach number	
$11-20$	CDO	

Cardset 9 (Continued)
Card Subset 2
Card 1

$\underline{\text { Column }}$	
$21-30$	
$31-40$	
$0 \mathrm{CL} / \partial \mathrm{CL}_{\min }{ }^{2}$	
$41-50$	
	$\partial \mathrm{CL} / \partial \alpha$
$51-60$	CL_{0}
$61-70$	M 2

Description

61-70 M2
Value of second Mach number
Card 2
Column Name
Description
1-10 CDO
11-20 $\quad \partial \mathrm{CD} / \partial \mathrm{CL}^{2}$
!
(7 values per card until all data for first sweep or input)
Repeat cardset 2 for each sweep angle.
Figure 16 shows an example for Table Format 3.

Figure 14 EXAMPLE OF TABLE FORMAT 1

ANGLE OF ATTACK

ANGLE OF ATTACK

[123 ${ }^{3}$								$\left.{ }^{19}{ }^{19}\right)^{2}$	${ }^{22}{ }^{21}$														$\left.4^{49}{ }^{40}\right\|^{31} 52$			${ }^{5}{ }^{57}{ }_{58}{ }^{5}$	${ }^{39} 90$	${ }^{61} 62$	[6]			${ }^{109} 70$	${ }_{7}^{71} 7$	$\left[{ }_{5}^{73} 575\right.$	${ }^{7} 78$	${ }^{79}$
3	4		18		CL		ABL	LE	EX	AN.	MPL	LE)																								
3.																																				
0.				4.																																
0.				4.					-5	0.				\cdots	3				1-1	0.			-.	3				10.								
. 3				50.					. 3																											
. 5				6.					-5 0	0.					5				-1	0.			-. 5	5				-5								
-. 3				5.1					. 3					10	-				. 5				50.	,				. 5								
. 6				6.					-510	0.				-.	7				1-1	0.			-	7				-5	-							
-. 5				5.					. 51					10	$1 \cdot$. 7				50.	-				. 7								
10.				2.					-5	0.				0.					50	.			0.													
20.				3.																																
0.				4.					-5	0.				--	2				-1	0.			-.	2				10	.							
	${ }^{5}$	${ }^{7} 8$	${ }^{\circ} 10{ }^{\prime \prime}$			${ }^{13} 10$	17818			23	25 28	${ }^{27}{ }_{28}$	${ }^{29} 3$	${ }^{31} 1$	3	${ }^{33}{ }^{3} /$	${ }^{37} 38$	${ }^{30} 40$	${ }^{41} 4$	${ }_{4}^{43}$	${ }^{45} 4$	${ }^{47} 48$			${ }^{55}$	${ }^{57} 5$	$5{ }^{50} 0$	${ }^{61} 6$	边	${ }^{65}$	${ }^{67} 8$	${ }^{69} 70$	72		${ }_{6} 77$	${ }^{8700}$
. 2				50					. 2																											
. 4				6.					-5	0.				--	6				-1	0.			-. 6	6				-5	.							
-. 4				5.					. 4					10					. 6				50.					. 6								
10.				2.					-5	0.				0.					50.				0.													
60.				2.																																
0.				2.					-5	0.				0.					50.				0.													
50.				2.					-5 0	0.				0.1					50.				0.1													

NOTE: ADDITIONAL POINTS INCLUDED TO PREVENT TABLE LOOKUP EXTRAPOLATION

Figure 15 EXAMPLE OF TABLE FORMAT 2

Figure 16 EXAMPLE OF TABLE FORMAT 3

Nomenclature - FORTRAN COMMON. - The table that follows is a list of the FORTRAN names, mathematical symbols, units, descriptions, and subroutines where computed for all items in COMMON.

$\begin{gathered} \text { FORTRAN } \\ \text { Name } \\ \hline \end{gathered}$	Symbol	Units	Description	Subroutine Computed
AHS		sec	Maximum step size that the RKVS integration package (STEP1 and STEP2) will take for its next integration step. (This may be decreased, but never increased for the step to be taken)	STEP1 STEP2
AK(40)			Auxiliary printout variables (see appendix B)	AKSTP STP1
AK11	α	deg	Angle of attack	AKSTP
AMAG(15)			Array used by RKVS for the integration of the forward trajectory	INITAL
AP(40)			A packed array containing only those auxiliary variables (AK's) to be printed at each time point on forward trajectories.	STP1
BINNER			Input backward trajectory integration error limit for RungeKutta variable step integration	INITAL
CAK11	$\operatorname{Cos} \alpha$		Cosine of the angle of attack	AKSTP
CD	$\mathrm{C}_{\text {D }}$		Drag coefficient	TLD
CI1	$\operatorname{Cos} \theta$		Cosine of the pitch angle (Set to 1 . if $\mathrm{NC}(77)=0$)	INITAL CØNTR
CI 2	$\operatorname{Cos} \varphi$		Cosine of the bank angle (Set to 1. if $\mathrm{NC}(78)=0$)	INITAL C \emptyset NTR
CK3	$\operatorname{Cos} \gamma_{R}$		Cosine of the flight path angle	AKSTP
CK5	Cos β		Cosine of the latitude (Set to $\text { 1. if } \mathrm{NC}(125)=0 \text {) }$	INITAL AKSTP
CK6	$\operatorname{Cos} \psi_{R}$		Cosine of the heading angle (Set to 1. if $\mathrm{NC}(126)=0$)	INITAL AKSTP
CL	C_{L}		Lift coefficient	TLD
C $\varnothing \mathrm{EFK}$			Step-size coefficient	KCALC
$\mathbf{C} \emptyset \mathrm{F}(2,5)$			An array containing aerodycoefficients (see Appendix B)	TLD INITC \varnothing
C $\varnothing \mathrm{N}(28)$			Array of constraint(s) and performance name(s)	INITAL

FORTRAN Name	Symbol	Units	Description S	Subroutines Computed
C \varnothing NST(30)			Array of program constants (see appendix B)	INITAL BL $\varnothing \mathrm{CK}$
CPSI(13)			Nondimensional constrain change(s) asked for	INITAL VALID
DEG			Radians to degrees conversion factor	BLØCK
DELC(14)	δ_{c}	deg	Input nozzle cant angle for each stage measured from body centerline. Assumes zero thrust component normal to body centerline.	INITAL
DELU(4)	$\delta \bar{u}$		Increment added to $\overline{\mathrm{u}}$ vector for next trajectory	UCALC
DELX(7)	$\delta \bar{x}_{O}$		Array of incremental changes in free initial conditions	INITAL VARIC
DELXI(7)			Input maximum allowable increment by which a free initial condition can change per iteration.	INITAL
DELXS(7)			Array of incremental changes in variable initial conditions in order of selected free initial conditions	INITAL VARIC
DENØM			Denominator of first Lagrange multiplier	MATRIX
DESXUK(170)			An array of alphanumeric characters containing all of the state, auxiliary (AK), and control variable names that can be selected for printout via the NC array. Each name is defined by two sequential words in this array.	$\mathrm{BL} \varnothing \mathrm{CK}$
DESXUP(120)			A packed array of alphanumeric characters containing the printout headings for a given computer run.	TITLES
DPHI			Change in performance (with respect to last accepted iteration)	MATRIX
DPHID			Predicted change in performance due to DUSQ	MATRIX
DPHIP			Total predicted change in performance	MATRLX

FORTRAN Name	Symbol	Units	Description	Subroutines Computed
DPHI3			Predicted changed in performance due to variable initial condition(s).	MATRIX
DPSIM(13)			Input desired final tolerance(s) for terminal constraints.	INITAL
DP2BAR			Value of DUSQ at the start of the first trial of any iteration.	MATRIX
DP2HI			Smallest value of DUSQ attained on any trial of an iteration that is greater than the current DUSQ.	MATRIX
DP2L \varnothing			Largest value of DUSQ attained on any trial of an iteration that is less than the current DUSQ.	MATRIX
DP2NM1			Value of DUSQ used on previous trial or valid step.	MATRIX
DP2TMY			Equal to $\sqrt{\text { DP2BAR } * \text { DUSQ }}$ and set only when too many trials for an iteration have been run.	MATRIX
DRH \varnothing			Constant used by RKVS integration package	n BLøCK
DTMIN(14)		sec	Input minimum allowable integration step for each stage	INITAL
DUSQ			Defined by equation 100	INITAL VALID MATRIX
DXNUM			DUSQ required for DBETA	MATRIX
EPSLN			Input maximum allowable tolerance in stopping conditions	ce INITAL
ERR(15)			Array of predictor-corrector errors	STEP1
F(15)			Array of derivatives for the equations of motion (see appendix B)	FPR \varnothing G PLAC $B \varnothing \varnothing \mathrm{M}$
FEFEI	$\mathrm{I}_{\varphi \rho}$		Value of I $\varphi \varphi$	MATRLX
FINNER			Input forward trajectory integration error limit for Runge-Kutta variable step integration	INITAL

FORTRAN Name	Symbol Units	Description	Subroutines Computed	
FSAVE(15)		Values of F array from previous integration step	EXEC	
FSIGN		Stopping condition indicator	EXEC	
FXTRA1		Constraint change factor. That part of the constraint error requested for the next iteration.	INITAL	VALID
FXTRA2	DU ${ }^{2} \mathrm{~min}$	Minimum allowable DU2	MATRIX	
FXTRA3		Not used		
FXTRA4		Saved value of time when DVAL2 was last called	LAMBDA	DVAL2
$G \emptyset$	$\mathrm{G}_{\mathrm{o}} \mathrm{ft} / \mathrm{sec}^{2}$	Input mass to weight conversion factor	INITAL	
GR	μ	Input earth gravitational constant times 10^{-15}	INITAL	
GUIDN(10,		Array of guidance phase names plus words used in printout of stopping condition and optimization parameter	BLøCK	
HITIM		The last, or highest, time stored in the TTMEU array	INITAL EXEC UCALC	
HMIN		Current minimum step size for a given stage	EXEC	
IDIAG		RKVS diagnostic print indicator	BLøCK	
IDØNE		RKVS step completed indicator	$\begin{aligned} & \text { STEP1 } \\ & \text { STEP } 2 \end{aligned}$	
IERRØR		RKVS error message indicator	BLØCK	
IN		RKVS control parameter (see ref. 8)		EXEC LAMBDA PARTIAL

FORTRAN Name	Symbol	Units	S Description	$\begin{array}{r} \text { Subro } \\ \text { Com } \\ \hline \end{array}$	utines puted
INC \varnothing R			Number of meaningful data words in the TIMEU array at a given time		EXEC
INDBNL			DUSQ 'bounce test" indicator	MATRIX	
INDSIC (13)			Number of consecutive accepted iterations since a constraint has been inside its temporary tolerance band.	VALID	
INDTMY			Too many trials indicator	INITAL MATRIX	
INDZER			End point search mode indicator	MATRIX	
INPØ			Printout counter for forward and backward trajectory	$\begin{aligned} & \text { EXEC } \\ & \text { STP1 } \end{aligned}$	LAMBDA STP2
INST			Storage counter for forward and backward trajectory	$\begin{aligned} & \text { EXEC } \\ & \text { STP1 } \end{aligned}$	LAMBDA STP2
INTØT			Counter for the total of words read into the TIMEU array	EXEC	UCALC
IPF(10)			Packed array containing state variable indices of the placards	TITLES	
IPRNT1			Input variable used to control printout of forward trajectory	INITAL	
IPRNT2			Input variable used to control printout of influence coefficients occurs during backward integration if $\mathrm{NC}(7)=1$	INITAL	
ISTØR1			Input variable used to control storage of time and partials along forward trajectory	INITAL	
ISTØR2			Input variable used to control storage of adjoints along backward trajectory	INITAL	
ITC			Current iteration counter	INITAL MATIX	
ITR8			Number of iterations that have been plotted	INITAL EXEC	

FORTRAN Name	Symbol Units	Description \quadSubroutines Computed
ITWめ27		Constant used by RKVS integra- BL \varnothing CK tion package. Computer word size dependent
IX (7)		Input array of indices for the free initial condition desired
$\operatorname{IXKU}(60)$		Packed array of the plot indices TITLES of the state variables, AK's, and control variables selected
IXTRA1		Thrust option indicator INITC \varnothing, TLD
IXTRA2		Fuel flow option indicator INITC \varnothing, TLD
IXTRA3		Aerodynamic option indicator INITC \varnothing, TLD
IXTRA 4		Not used
KDAT		Logical tape number assigned to BL $\varnothing C K$ the data tape. KDAT contains all input tables except table 0 . KDAT is written in INITAL and LAMBDA and read in EXEC and CARDS
KINP		Logical tape number assigned to BLøCK the input tape, KINP, is read in INITAL
K LAM		Logical tape number assigned to BLøCK the adjoint tape. KLAM is written in STP2 and contains T, UULAM array, and U array of each point stored during adjoint integration. KLAM is read in UCALC to build new control history.
KøUT		Logical tape number assigned to BLøCK the output tape. KøUT is written in INITAL, CARDS, STP1, STP2, STEP1, STEP2, MATØUT, VALID, MATRIX, KCALC, VARIC, PRTIAL, AKSTP
KPAR		Logical tape number assigned to BL $\varnothing C K$ the partial tape. KPAR contains NETA records of T, PFX, PFU, and U. KPAR is written in STP1 and read in DVAL2. Also, subroutine UCALC uses KPAR for scratch storage.

FORTRA Name	Symbol Units	S Description	Subroutines Computed	
KPLT		Logical tape number assigned to the plot tape. KPLT is written in STP1 and contains the data to be plotted. KPLT is read by PLOTZ	BLØCK	
KPUN		Logical tape number assigned to the punch tape. KPUN is written in CARDS	BLøCK	
KSCR		Logical tape number assigned to the scratch tape. KSCR is written in STP1 and contains the control variable history of every accepted valid trajectory.	BLØCK	
KTAN		Logical tape number assigned to the control history overlay tape. KTAN is written in INITAL and UCALC and contains the part of the control history that would not fit in the TIMEU array. KTAN is read by EXEC.	BLØCK	
KTC		Index of weight in the IX array only I if weight is a free initial condition.	INITAL	
L(14)		Array of program control indicators (see appendix B)		
LETA		Number of stored integration points generated during a backward trajectory	STP2 LAMBD	
LINES		Printout line counter during the forward and backward trajectory. Subroutines STP1 and STP2 will page when LINES exceeds 57.	$\begin{aligned} & \text { EXEC } \\ & \text { STP1 } \end{aligned}$	$\begin{aligned} & \text { LAMBDA } \\ & \text { STP2 } \end{aligned}$
LINET1		Number of lines (including blank lines) printed at each printed time during the forward trajectory	INITAL	
LINE T2		Number of lines (including blank lines) printed at each printed time during the backward trajectory	INITAL	
LV		Total number of equations being integrated during backward trajectory	INITAL	

FORTRAN Name	Symbol Units	Description	Subroutines Computed
MAL		Current closed-loop mode number	INITAL
			GUIDE
MITC		Largest value of J in the $\operatorname{PFX}(I, J)$ array for a given problem	INITAL
MNDIAG		Desired maximum number of diagnostics printed from RKVS per (computer) stage	BLøCK
M $\varnothing \mathrm{DZ}$		RKVS parameter that determines the method of integration	EXEC LAMBDA
MSTAGE		Input total number of (computer) stages	INITAL
NAM(2)		Two alphanumeric words (STG and END) used as indicators during reading of data. First word determines when stage-dependent data is to be read. Second word determines when all the data for a case has been read.	BLØCK
NARBY		Input degree of problem solution indicator	INITAL
NC(160)		See input description	INITAL
ND(112)		Start and end location of all input stage dependent tables in Z array	INITAL
NDS(34)		Starting locations of all input tables in Z array for a given stage	INITAL EXEC
NEめM		Number of equations of motion being integrated, excluding enroute constraints	TITLES
NERR(15)		Array used by RKVS for error control during integration of forward trajectory	INITAL
NERRS1		RKVS error message control	BLØCK
NERRS2		RKVS error message control	BLØCK
NERRS3		RKVS error message control	BLめCK
NETA		Number of stored integration points generated during a valid forward trajectory	EXEC STP1

FORTRAN Name	Symbol Units	Description	Subroutines Computed	
NETAP(6)		Number of dated points saved for each trajectory to be plotted	EXEC	
NETLST		Number of integration steps taken for the previous valid forward trajectory	LAMBDA	
NEZ		Location in Z array that contains last data point of last nonstage dependent table	INITAL	
NITC		Input maximum number of iterations desired	S INITAL	
NK		Number of selected auxiliary printout variables (AK's)	TITLES	
NØUP		Total number of points in the control table at any time	INITAL	UCALC
NP(40)		Packed array of auxiliary printout variable indices	TITLES	
NPF		Number of penalty functions to be integrated	TITLES	
NPHASE		Current closed-loop phase number	INITAL	
NPLTZ		Number of plots to be madc for a given data case	TITLES	
NPP		Index of the state variable to be used for the payoff variable	INITAL	
NRIC		Number of sets of partial derivatives that will fit in allowable storage during backward integration at any one time.	LAMBDA	
NSE		Abort error indicator	MATRIX AKSTP STP1	INITAL EXEC STP2
NST		Index of state variable to be used as stopping condition	INITAL	
NSTAGE		Current (computer) stage	INITAL	
NTB		Closed-loop guidance table counter. (Initialized to 23 and incremented each time subroutine GUIDE requires a new guidance table)	INITAL	GUIDE

FORTRAN Name	Symbol Units	Description	Subroutine Compute	
NTRY		Current trial number (set to 1 at the start of every iteration)	INITAL VALID	MATRIX
NU		Number of control variables selected	TITLES	
NUMNC		Total number of input nonzero plot indicating NC's (NC(61) NC(74))	TITLES	
NUP1		Number of control variables selected plus 1	INITAL	
NV		Subset of the equations being integrated in the predictorcorrector mode during the forward trajectory	INITAL	
NV4M		Location in the FB array preceding the first adjoint derivative	INITAL	
NWPR		Number of words per record written on KPAR tape on subroutine STP1	INITAL	
NX		Total number of equations of motion being integrated during the forward trajectory	TITLES	
NXUK		The sum of the selected number of state variables, auxiliary printout variables, and control variables plus 1	TITLES	
N2UK		Two times NXUK and indicates the total number of words needed to print the trajectory heading	TITLES	
N4		Number of constraints plus the performance and stopping condition	TITLES	
N4M1		N4-1	TITLES	
N4M2		N4-2	TITLES	
$\emptyset_{\text {MEGA }}$	$\omega \mathrm{rad} / \mathrm{sec}$	Earth rotational rate	INITAL	
PFU(15,4)		$\begin{aligned} & \text { Array of } \Delta \dot{X}_{I} / \partial U_{J} \quad I=1, N X, \\ & J=1, N U \end{aligned}$	ANPRTL	

FORTRAN Name	Symbol	Units	Description	Subroutin Comput	
$\operatorname{PFX}(15,7)$			Array of $\partial \mathrm{F}_{\mathrm{I}} / \partial \mathrm{X}_{\mathrm{J}} \mathrm{I}=1$, NX , $\mathrm{J}=1$, MITC	ANPRTL	
PHIGRN			Largest value in magnitude that performance parameter has attained on any previous accepted iteration	MATRIX	VALID
PHIK			Step-size coefficient with respect to performance	KCALC	
PHIM 1			Performance value for the last accepted iteration	VALID	
PHINL			Nonlinearity of performance variable	KCALC	
PHINLD			Desired nonlinearity of performance	BLøCK	
PLTNAM(Array containing hollerith data used for plot titles Each plot title is defined by four words of this array	TITLES	
PMPH			$\partial \mathrm{mach} / \partial$ altitude	AKSTP	
PMPV			a mach/ ${ }^{\text {velocity }}$	AKSTP	
PQPH			$\boldsymbol{\partial}$ dynamic pressure/ ∂ altitude	AKSTP	
PQPM			Odynamic pressure/ mach	AKSTP	
PQPV			-dynamic pressure/ovelocity	AKSTP	
PSI(13)			Input desired value(s) for terminal constraint(s)	INITAL	
PSIM 1 (13)			Terminal constraint value(s) for previous accepted iteration	VALID	
RAD			Degrees to radians conversion factor	BLøCK	
RADIC			Absolute value of first Lagrange multiplier	MATRIX	
$R \emptyset$	$\mathrm{R}_{\mathrm{O}} \quad \mathrm{ft}$		Input earth radius	INITAL	
$S(10,5)$			Array used to transmit placard value and derivatives of the placard input table (see subroutine PLAC)	PLAC	

FORTRAN Name	Symbol	Units	Description	Subroutine Computed	
SAK11	$\operatorname{Sin} \alpha$		Sine of the angle of attack	AKSTP	
SI1	$\operatorname{Sin} \theta$		Sine of the pitch angle (set to zero if $\mathrm{NC}(77)=0$)	CøNTR	
SI 2	$\operatorname{Sin} \varphi$		Sine of the bank angle (set to zero if $\mathrm{NC}(78)=0$)	C \varnothing NTR	
SK3	Sin γ_{R}		Sine of the flight path angle	AKSTP	
SK5	Sin β		Sine of the latitude (set to zero if $\mathrm{NC}(125)=0$)	AKSTP	
SK6	$\operatorname{Sin} \psi_{\mathbf{R}}$		Sine of the heading angle (set to zero if $\mathrm{NC}(126)=0$)	AKSTP	
SREF(14)	S	ft^{2}	Input aerodynamic reference area for each stage	INITAL	
T	t	sec	Trajectory time measure from zero at launch	EXEC STEP1	LAMBDA STEP2
TI		sec	Total time increment to be integrated for a stage	EXEC	LAMBDA
TIMEU(10			The first 1000 words of the input control table. The remainder of the control table (if any) is written on KTAN in record sizes of NUPI words	INITAL UCALC	EXEC
TITL(12)			Alphanumeric case title	INITAL	
T \varnothing MAX		sec	Terminal trajectory time - updated every accepted iteration	MATRIX	
$\operatorname{TSTP}(14)$		sec	Input stopping time for each stage measured from time zero at launch	INITAL	
ТТØL(13)			Temporary tolerances (one for each constraint)	VALID	
$\mathrm{U}(4)$	u		Array of control variables	CめNTR	GUIDE
U11	θ	deg	Pitch angle (set to zero if $N C(77)=0)$	C \emptyset NTR	
UI2	φ	deg	Bank angle (set to zero if $\mathrm{NC}(78)=0$)	C \varnothing NTR	
UI3	η		Throttling parameter (set to 1 if $N C(79)=0)$	C \varnothing NTR	GUIDE
UI4	Λ	deg	Sweep angle (set to zero if $N C(80)=0)$	CØNTR	

FORTRAN Name	Symbol	Units	Description	Subroutin Compute	
VAR(50)			Array of variables (see appendix B)	AKSTP INITAL	TLD
VIN(4)	w_{ij}		Automatic weighting matrix elements	LAMBDA	
VINP(4)			Input weighting matrix elements	DVAL2	
WDØT(14)	$\dot{\mathrm{W}}_{\text {inert }}$	$\mathrm{lb} / \mathrm{sec}$	Input inert weight flow for each stage	INITAL	
Wめ(14)		lb	Input initial weight of each stage	INTTAL	
$\mathrm{X}(15)$			Array of state variables being integrated	INITC \varnothing EXEC	STEP1 INITAL
XKM (14)			Input weight flow correction factor for each stage	INITAL	
XKT(14)			Input total impulse correction factor for each stage	INITAL	
XK1	W	Ib	Weight (set to initial weight if $N C(121)=0)$	INITCめ	
XNAME (19)			Alphanumeric adjoint headings	BL \varnothing CK	
XNC9			Floating point value equivalent to $\mathrm{NC}(9)$	INITAL	
XNUM			Numerator of first Lagrange multiplier	MATRIX	
X \varnothing (15)			Input initial values of state variables	INITAL	
ХФIMAX(7)			Input maximum allowable value of free initial condition	INITAL	
$\mathrm{X} \varnothing \mathrm{IM} \operatorname{IN}(7)$			Input minimum allowable value of free initial condition	INITAL	
XRHØ			Constant used by RKVS integration package	BLøCK	
XSAVES(15)			Terminal value of state variables from previous valid trajectory	VALID	
XSTP			Input desired value of stopping condition	INITAL	STP1
$\text { XXLAM }(15$	$\begin{aligned} & 14) \\ & \Lambda \end{aligned}$		Influence coefficients corrected for stopping time variation	DVAL2	

FORTRAN Name	Symbol	Units	Description	Subrouti Comput	
YNAME (14)			Alphanumeric adjoint headings	BLめCK	
Z (7000)			General data storage array for nonstage-dependent tables (per stage) during forward trajectory. Used for storage of partial sets during backward integration (See program equivalencing)	INITAL CARDS	EXEC UCALC

The program produces three types of output: the printout, punched cards, and magnetic tape.

Printed output. - The printout gives listings of the basic input data, controls for the program, trajectory data for both forward and backward integrations, convergence information, a control variable printout, and a trajectory summary. A partial derivative check is printed out during the nominal forward trajectory if selected.

Preliminary trajectory printout:

Page 1

Program title
Data case title
Initial condition data
Stage dependent parameters
Constraint dependent parameters
Optimization parameter
Stopping parameter
Free initial condition parameters
Guidance phase dependent parameters

Page 2

Control card (see card set 2)
NC array

Page 3

(Number of pages are dependent on number and size of tables)
The input tables are printed in the order they are input
The nonstage dependent tables are printed first, followed by the tables for each stage.

Forward trajectory: The forward trajectory printout follows the tabular output. At the top of each page, the names of each variable selected for printout appear. These headings are printed eight per line, beginning with TIME. The state, auxiliary, and control variable headings are printed next, beginning with the first state variable and ending with the last control variable. Any heading followed by an asterisk (*) indicates metric units for that variable. The printout of the forward trajectory data occurs every IPRNT1 integration steps, with
two blank lines between each printed step. A line counter, assuming 57 lines per page, ensures that each page will begin with the headings described above. For data cases with more than one stage, the beginning of each stage starts a new page.

Partial derivative check printout: The forward trajectory printout format is altered if the numerical partial check option is being used. The partial derivative printout will occur every NC (12) stored integration steps immediately following the forward trajectory printout of the same time point. The format for the partial check follows: The word TIME and the current time are printed on the first line. The partials are printed eight per line with 1PE14.7 format.

The analytical partial derivatives of the first equation of motion with respect to the first MITC state variables are printed first, followed by the equivalent numerical partials. This is repeated for each of NX equations of motion in following rows. The printout of the partial derivatives with respect to the state variables has the form of the array PFX (I, J) where I (the row) represents the equation of motion and J (the column) represents the derivative state variable.

The analytical partial derivatives of the NX equations of motion with respect to the first control variable are printed next, followed by the equivalent numerical partials. This is repeated for NU control variables. The printout of the partial derivatives of the equations of motion with respect to the control variables has the form of the array PFU (I, J) where I (the column) represents the equation of motion and J (the row) represents the derivative control variable.

Backward trajectory printout: The backward trajectory is printed only if NC(7) is nonzero. The backward trajectory begins at the final time of the valid step and integrates to the trajectory starting time, printing the influence coefficients and instantaneous impulse responses every IPRNT2 integration steps. Both the influence coefficients and impulse responses are corrected for variations in the stopping condition. At the top of each page is printed a block of headings identifying each variable. The work TIME and the current time are printed on the first line. The second line consists of the influence coefficients for MITC state variables on performance. Next are printed the influence coefficients for MITC state variables on the first constraint, followed by the influence coefficients for MITC state variables on the second constraint, etc., through all the constraints. Following the influence coefficient printout, the instantaneous impulse responses for the first control variable on performance, on the first constraint, the second constraint, etc., are printed. The next row of print is the impulse response for the second control variable on performance, on the first constraint, the second constraint, etc., through all constraints. This is repeated for all the control variables selected. The backward trajectory printout uses the same line count and paging control as the forward trajectory printout.

Matrix printout (convergence information): The convergence printout gives information used by the stepsize controller in making decisions concerning trial trajectories, valid steps, etc. The printout is given as notes and as arrays of
values used by the program. The information aids the user in determining the nature of convergence. The printout information and notes are given below. The underlined statements and statements preceding a colon are for clarification in describing regions of the printout and are not part of the printout.

Printout from convergence logic after a valid step or trial.
Iteration number
Trial number
Number of integration points stored during forward trajectory integration (NETA)

Number of integration points stored during backward trajectory integration (LETA)

Printout from convergence logic after a valid step only.
Majority vote counter
Messages printed under special conditions are:
"Number of tries plus rejected valid steps for current iteration exceeds 10 - abort"
"Too many functions with adverse travel"
"Adverse phi too great"
"DUSQ modified because of too many tries:
"Reject valid step"

Printout from convergence logic after a reverse intcgration only.
I matrix
Minimum allowable DUSQ
$\mathrm{I}_{\boldsymbol{\varphi} \psi} \times \mathrm{I}_{\psi \psi}^{-1} \times \mathrm{I}_{\psi \varphi}$
Denominator of first Lagrange multiplier
Diagonal elements of automatic weighting matrix
*Derivatives of performance with respect to variable initial condition (DPDX)
*Elements of DPDX (SUM, XXLAM)
Note: (1) The items with $*$ are printed only when the variable initial condition option is selected, $\mathrm{NC}(5) \neq 0$.
(2) XXLAM is the performance change resulting from a unit step in X_{o} (first term in the bracket in equation 127) and SUM is the performance change that would result if the control function were modified to bring the constraint vector back to the state prior to the application of X_{O} (second term in the bracket in equation 127).

Messages printed under special conditions are:
"Convergence failed"
"Converging but gradient too large for extremal"
"The last trajectory appears to be an extremal"
"Gradient of phi too negative to continue"
"Overflow occurred in matrix inversion-abort"
"Singular matrix-abort"
Printout from convergence logic after a trial only.
Majority vote counter
*Maximum permissible changes in constraints
*Controlling function and the step-size coefficient
*Function or functions reducing step-size coefficient and the new value of the step-size coefficient
*Final step-size coefficient
Note: The notes above with * are written only if the majority vote is \geq zero

Messages printed under special conditions are:
"Controlling with constraint within tolerance band which reduces the step-size coefficient - repeat-step-size-coefficient calculation"
"Too many functions with adverse travel"
"Adverse phi too great"
"End point search and step-size coefficient greater than 2 - force valid step"
"Penalty function violation - force valid step"
'Performance improved and step-size coefficient equals 0.5 , accept current trial and force valid step"
"All constraints outside tolerance band improved but DUSQ reduced too much, accept current trial and force valid step"
"DUSQ was increasing and wants to decrease accept previous trial and force valid step"
'DUSQ was decreasing and wants to increase accept current trial and force valid step"

Printout from convergence logic after a reverse integration, trial, or a rejected valid step.

Step-size (DUSQ) required for $\Delta \beta$
Numerator of first Lagrange multiplier
Lagrange multipliers
Accuracy check for step-size (DUSQ) (this value should agree with the value of DUSQ for next trajectory)

Heading block of constraint and performance names
Current end point values of constraints and performance
Previous valid step end point values of constraints and performance
Change in constraint and performance end point values
Constraint travel indicator (0 if inside tolerance band, 1 if constraint change is toward desired constraint value, and -1 if constraint change is away from desired constraint value)

Constraint tolerance indicators (number of consecutive iterations a constraint has been outside its tolerance band)
Allowable nondimensional forward constraint change (in the direction of the desired constraint value)
Allowable nondimensional backward constraint change (in the direction away from the desired constraint value)

Nondimensional constraint change asked for (percentage of constraint error to be eliminated by this iteration)

Constraint tolerance bands
Nonlinearities of constraints and performance
Step-size coefficients of constraints and performance
Maximum step-size coefficients of constraints (based on maximum permissible constraint travel)
Predicted changes in constraint and performance end points (total)
Predicted changes in constraint and performance end points due to step-size (DUSQ)
Predicted changes in constraint and performance end points due to changes in variable initial conditions

Changes in variable initial conditions to be made on next trial or valid step (printed only if variable initial condition option is selected, $N C(5) \neq 0)$

Final step-size coefficient
DUSQ for next trajectory
Messages printed under special conditions:
"DUSQ too small to meet DBETA"
"DUSQ set equal to DUSQ required for DBETA"
"End point search"
"Scale DBETA to match DUSQ"
"DUSQ set to minimum allowable value"
"DUSQ too small for optimization -DUSQ reset"
" 6 tries are too many - force valid step"
"8 tries are too many - force valid step"
"Next trajectory will be a trial"
"Next trajectory will be a valid step"

Control variable table and restart table: The control variable table and the restart table are printed following the last iteration. The restart table is not printed following the running of a nominal trajectory only.

Trajectory summary: The trajcctory summary follows the printout of the control variable table and restart table if one or more iterations have been run. The heading block that appears at the beginning of the trajectory summary is identical to the one which appears during the printout of the forward trajectory. The format of the trajectory summary is also identical to the forward trajectory format. The summary contains the end points for each successful iteration.

Punched card output. - The program produces punched cards in the form of control variable and restart tables. These tables are used to restart a problem from the point where it was stopped.

Punched output is produced when either or both of the following options are selected:

1) $\mathrm{NC}(8)>0$ and $\mathrm{NARBY}=2$
2) $\mathrm{NC}(8)>0$ and $\mathrm{NC}(13)>0$

The control table is punched six words per card in octal format (6012) and the restart table is punched in $24 \mathrm{I} 3 / 6 \mathrm{E} 12.5$. Both tables are preceded by title cards in the format required for input to the program. A restart table is not punched following a nominal trajectory.

The restart table consists of previous valid step convergence information, used by the MATRIX subroutine. Included in this table are DUSQ, performance and constraint end points, constraint temporary tolerance bands, and the stopping time of the previous valid step.

Note: If punched cards are not produced due to machine error or program abort, the control variable table can be recovered from the magnetic tape (KSCR).

Restart table output description:

Card 1

Column
1-5
6-10

12-23
24-47

Card 2
Column
1-3
Name
INDTMY

Description

Restart table number (0)
Number of cards in restart table (title card not included in this count)

Alphanumeric word RESTART
Case title as input on title card of data case
Format 24I3

Description

Forced valid step indicator
$=0$ valid step not forced
$=1$ valid step forced because too many trials were run
$=2$ valid step forced because control logic is using the minimum allowable value of $D U S Q$
$\left.\begin{array}{cc}4-6 & \text { INDSIC(1) } \\ 7-9 & \text { INDSIC(2) } \\ 10-12 & \text { INDSIC(3) } \\ \vdots & \vdots \\ 40-42 & \vdots\end{array}\right\}$

Number of consecutive iterations a constraint has been outside its respective temporary tolerance band. A value is present for each constraint (None of these values appear for a no-constraint problem.)

Card 3		Format 6E12. 5
Column	Name	Description
1-12	DUSQ	Value of DUSQ used for last successful valid step
13-24	FXTRA1	Amount of nondimensional constraint error asked for on the last valid step. (This value will be zero for a no-constraint problem.) This is the maximum amount of constraint error that can be asked for by any one constraint.
25-36	DP2TMY	(DP2BAR \times DUSQ) ${ }^{1 / 2}$ where DP2BAR is the value of DUSQ used on the second-to-last successful valid step and DUSQ is the current value of DUSQ. Note: DUSQ is set equal to DP2TMY only when the indicator INDTMY has been set equal to 1 .
37-48	TØMAX	Trajectory time for last successful valid step.
$49-60$	PHIM1	Value of the performance function on the second-tolast successful valid step.
(The following values occur only if the problem has one or more constraints.)		
61-72	PSIM1 1 (Terminal value of the first constraint on the second-to-last successful valid step.
(If needed)		
Column	Name	Description
1-12	TTØL(1)	The temporary tolerance band corresponding to the first constraint (expressed as half of the total band width).
13-24	CPSI(1)	The amount of nondimensional constraint error asked for on the last valid step.
		Note: This value is normally equal to FXTRA1 but under the conditions mentioned in appendix C, the value may be 0.1 .
25-36	PSIM1 (2)	
37-48	TT $\varnothing \mathrm{L}(2)$	Values for second constraint
49-60	CPSI(2)	

Special notes:

1) The value of DUSQ input through the use of a restart table will override the value of DUSQ input in the initial condition data section of the input;
2) The values of the temporary tolerances input through the restart table will override those normally computed by the control logic using the final input constraint tolerances;
3) If it is desired to change the amount of constraint error asked for all that is necessary is to change the value of FXTRA1.
(FXTRA1 must never be greater than 1.)
The individual values of CPSI are set equal to FXTRA1 or . 1 (under special conditions mentioned above).

The values of CPSI never need to be reset.
Magnetic tape output. - The program produces a magnetic tape when plotting (KPLT) and another magnetic tape when iterating (KSCR).

Plot tape (KPLT): The tape KPLT is produced when NC (11) $\neq 0$. This tape contains the data for the variables selected for plotting. For each valid trajectory that is plotted, NETA records are written on KPLT in binary format. The number of points stored when plotting (NETA) must be less than or equal to 1000. (The absolute value of $\mathrm{NC}(11)$ defines which iterations will be plotted.) The number of words written per record is two times the number of plots to be made, or the number of nonzero elements in the NC array from NC(61) through NC(74). The plot data is written on tape every ISTOR1 integration steps in the order selected by input.

Control table tape (KSCR): The tape KSCR contains the control variable history for the nominal and each accepted valid trajectory of a data case in binary format. This tape is generated when NC (8) >0; and NARBY $=2$ and/or NC $(13)>0$. For each valid trajectory there are NETA records written on tape, where each record consists of TIME and NU control variables. This tape (KSCR) is used to recover the control table for any iteration, in the event a data case is interrupted and doesn't punch cards.

The procedure used to recover a control table is described below. A short FORTRAN IV program called "THETA" is included in the source decks for the STOP program. This program reads the binary tape (KSCR) on logical unit 2 and produces a listing and punched cards (OCTAL FORMAT 6ø12) of the control variable table selected by input. Input to this program is described below.

CARD NUMBER 1 (315, 4A6)
COLS 1-5, ITC, Number of control tables written on KSCR up to, but not including, the desired table. (The nominal and every accepted valid step will have a control table written on tape.) Equal to ITC printed immediately following desired valid step.
COLS 6-10, NU, Number of control variables used.
COLS 11-15, NTABLE, Number of copies of control table desired.
COLS 21-44, TITLE
Any information desired on the title card of the punched control table.

CARD NUMBER 2 (14T5)
COLS 1-5, NETAS(1)
Number of points stored during nominal
6-10, NETAS(2)
Number of points stored during first valid trajectory.

11-15, NETAS(3)
Number of points stored during second valid trajectory.
16-20, NETAS(4)
Number of points stored during third valid trajec'tory.

:
 -
 -

-
-

NETAS(ITC)
Number of points stored during valid trajectory preceding the one from which restart is desired.
NETA
Number of points stored during valid trajectory from which restart is desired.

Both the printed and punched tables produced contain one additional point at the end of the data to prevent extrapolation off the end of the table.

Sample Problem

A sample problem is given which demonstrates the data setup and output for a simple, single-stage, air-launched rocket. One iteration is given showing the nominal trajectory, the control logic output, one trial, a valid step, an output control table and restart table, and the trajectory summary.

Statement of problem. - The flight path and control variable history are required to maximize the final weight of the rocket with the following initial conditions.

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{o}}=1500 \text { pounds } \\
& \mathrm{h}_{\mathrm{o}}=500 \text { feet } \\
& \gamma_{\mathrm{o}}=60 \text { degrees } \\
& \mathrm{V}_{\mathrm{o}}=600 \mathrm{fps}
\end{aligned}
$$

The terminal constraints imposed are:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{f}}=2000 \mathrm{fps} \\
& \mathrm{~h}_{\mathrm{f}}=1200 \mathrm{feet}
\end{aligned}
$$

The final velocity is selected as the stopping condition. The initial weight and flight path angles are free to change to improve performance. The initial conditions W_{o} and γ_{o} above are the starting values.

The aerodynamics and propulsion clata are given in tables II and III. The reference area is 2 square feet.

TABLE II Aerodynamic Data

M	C_{D}	$\boldsymbol{\partial S ~}_{\text {D }}$	$\mathrm{C}_{\mathrm{L}_{\alpha}}$
		$\overline{a_{C}{ }_{L}^{2}}$	
0	. 2	. 5	. 075
1.5	. 4	. 5	. 075
10	. 4	. 5	. 075

TABLE III Propulsion Data

Thrust	7000 pounds
Specific impulse	280 seconds
Nozzle exit area	144 square inches

Sample input. - The statement of problem is transformed into data input cards through the use of the STOP input instructions given under "Input Data Preparation." The data input cards are listed below.

Sample output. - The results of the problem for one iteration are given below. A complete description of the printed output is given in the section on output description.

SUPERSCNIC TRANSPORT OPTIMIZATION PROGRAM (STOP) THETA CONTROL 7094 [RSYS 13 VERSIC

 EXAMPLE ROCKET CFECK CASEINITIAL CONDITIGN DATA
$X S T P=2.0000000 E 03 G R=1.40 E 1718 E 16$ RO $=2.0902992 E 07$ OMEGA $=0.0000600 E-39$ GO $=3.21746 G C E G 1$

XO(4) $=6.0000000 E 02$ XOL

- STAGE DEPENDENT PARAMETERS

STAGE	$\frac{\text { WEIGHT }}{1500.00000}$	$\frac{T S T P}{4 C C .00000}$	$\frac{S R E F}{2.00000}$	$\begin{aligned} & \text { DELC } \\ & 0.00000 \end{aligned}$	$\begin{aligned} & x k T \\ & 1.00000 \end{aligned}$	$\begin{gathered} x k^{4} \\ 1.00060 \end{gathered}$	WOOT $\because .0$ ̄ㅡㅇ	UTMIN c. 1 motio
CONSTRAINT	DEPENDENT PARAMETERS							
VARIABLE								
ALTITUDE	120	$\overline{\mathrm{C}} \overline{\mathrm{C}}^{-}$			--	-		
MAXIMILE	WEIGHT							

STUP ON VELOCITYR

\qquad
\qquad
\qquad
\qquad
\qquad
．．．．．．．．NC cINTROLS

 $N C(21)=0 \quad N C(22)=0 \quad N C(23)=0 \quad N C(24)=0 \quad N C(25)=2 \quad N(126)=0 \quad N C(271=0 \quad N C(28)=1 \quad N(1 \quad 291=0 \quad N(1 \quad 3 ? 1=($

 NC（ 91）$=1 \quad N C(92)=0 \quad N C(53)=0 \quad N C(54)=0 \quad N(195)=0$ $N C(102)=0 \quad N C(102)=0 \quad N C(1 C 2)=0-N C(1 C 4)=0 \quad N C(105)=0$ $\begin{array}{lllll}N C(111)=0 & N C(112)=0 & N C(112)=0 & N C(114)=0 & N C(115)=0 \\ N C(121)=1 & N C(122)=1 & N C(123)=1 & N C(124)=1 & N C(125)=0\end{array}$ $\begin{array}{llll}N C(121)= & N C(122)=1 & N C(123)=1 & N C(124)=1 \\ N C(131)=0 \quad N C(132)=0 \quad N C(133)=0 \quad N C(124)=0 \quad N C(135)=0\end{array}$ $N C(141)=0 \quad N C(142)=0 \quad N C(143)=0 \quad N C(144)=0 \quad N C(145)=0 \quad N(136)=0 \quad N C(137)=C$
non－stage dependent tables

\qquad

\qquad
\qquad
\qquad
TERATION
0 TRIAL
0 NETA 26 LETA
0

I Marrix

$0.33750698 \mathrm{E}-01-0.51741087 \mathrm{E}$
$-0.51741087 \mathrm{E} 01 \quad 0.29956934 \mathrm{E} 04$
MINIMUM ALLOHABLE DUSO
$0.12824789 \mathrm{E} \quad 03$
I PHI PSI I I PSI PSI INVERSE:I PSI PHI _ O. $89166292 \mathrm{E}=02$
DENOMINATOR OF FIRST LAGRANGE MULTIPLIER- $0.24814069 F-01$
AUTOMATIC WEIGHTING YATRIX ELEMENTS $\quad 0.10000000 E$ OI
VARIC CHECKOUT PRINTOUT - OPDX, SU4, XXLAM $\quad 0.72270353 E$ OO - $0.16818235 E-01 \quad 0.705 A 853$ CE ON
VARIC CHECKOUT PRINTOUT - DPOX,SLY.XXLAM $0.26056315 E-00-0.33655244 E-01-0.22689791 E$ OO
DUSO REQUIRED FOR DBETA
$0.58396113 E 03$
NUMERATOR OF FIRSI LAGRANGE MLLTIPLIEH -0.38396113E D3
DUSO TOO SMALL TO MEET DRETA
sCale dbeta to match duso
DUSO TOO SMALL FOR OPTIMILATICN-CLSQ RESET
DUSG REQUIREO FOR OBETA
numerator of first lagrange multiplier
LAGRANGE MULTIPLIERS
9.200COCOCE 03
0.21000000 E 03
C. $91994244 \mathrm{E} 02-0.99493583 \mathrm{E}-01$

ACCURACY GHECK FOR DUSO
$0.40959599 E 03$ -

	ALILIUNE	HEJCHL
CURRENT END PCINT VALUES	18198.317139	1066.386520
PREVIOUS VALID STEP END PCINT VALUES	0.000000	0.000000
CHANGE IN END POINTS	0.000000	1066.386520
CONSTRAINT TRAVEL INEICATORIST	23159	
CONSTRAINT CROSS-OVER INDICATCR(S)	l	
ALLOWABLE FORHARD CCNSTRAINT CHANGE(N-D)	0.000000	
ALLOWAble backwaro constraint changelñol	- 0.00000	
CONSTRAINT CHANGE ASKED FOR(NT-C)	0.050000	
CONSTRAINT TOLERANCE(S)	1000.000000	
NÕN-LINEARTITTES	0.00000	0.000000
Step-size coefficients	C. 0000600	0.000000
MAXIITUM STEP-SILE COEFFICIENT(S)	0.000000	
PRECICTED END POINT CHANGE(S) (TOTAL)	-181.370571	45.195420
PRECICTED ENO POINT Changess) (DUSG)	-774.040482	3.619660
PREDICTED END POINT CHANGE(S) (VIC)	592.669907	41.575759
CHANGE IN WEIGAT VIC	58.522521	
Change in gammar vic	1.170450	
FINAL STEP SILE COEFFICIENT	0.000000	
DUSO FOR NEXT TRAJECTORY	409.999996	
NEXT TRAJECTORY WILL BE A TRIAL		

NEXT TRAJECTORY WILL BE A TRIAL

ILME	WELGHT	ALTITUDE	GAMYA R	VELOCLY R	IHRUS.	LIEI	ORAG
0	MACH NUMBER	WEIGHT FLGW	AL PHA	PITCH ANGLE			
-0.000	1558.523	500.600	-61. 170	-_6C0.000	4921.729	291.923	279.764
421.757	0.538	25.000	4.614	85.785			
18.161	1104.493	18152. 601	44.945	2000.000	5949.163	1319.802	2319.637
2697.753	1.915	25.000	3.262	48.207			

ITERATION 1 TRIAL 1 NETA= 0 LETA= 73

MAJORITY VOTE TEST *** ENTERING KCALC ***	1
MAXIMUM PERMISSABLE CHANGE IA ALTITUDE CONTROLLING WITH WEIGHT	-1503.091888
STEP-SIZE COEFFICIENT	1.912763
FINAL STEP-SILE COEFFICIENT *** LEAVING KCALC ***	1.912763
DUSO REOUIRED FOR DBETA	$0.99495189 E 03$
NUMERATOR OF FIRST LAGRANGE MULTIPLIER	0.50510020 E 03
DUSO TOG SMALL FOR OPTIMIZATICN-CUSQ RESET	
DUSC REOUIRED FOR DBETA	0.99495189 E 03
NUMERATOR ḊF First lágrange multiplien	$0.10446995 \overline{04}$
Lagrange multipligrs	$0.20519551 E 03$
ACCURACY CHECK FOR DUSO	$0.20396513 \mathrm{E} \quad 04$
CURRENT END PDINT VALUES	ALTITUDE 18152.001310
Previous valio step end point valles	18198.317139
CHANGE IN ENG POINTS	-45.715829
CONSTRAINT TRAVEL INDICATOR(S)	1
CONSTRAINT CROSS-OVER INDICATOR(S)	1
allowable forward constraint change (n-0)	4.850000
ALLOWA BLE BACKWARC CONSTRAINT CHAMGE(A-C)	1.060000
CONSTRAINT CFANGE ASKED FCR(K-C)	0.050007
CONSTRAINT TCLERANCE(S)	1000.000000
NON-LINEAR ITIES	-0.74794?
STFP-SIZE COEFFICIENTS	0.401100
MAXIMUH STEP-SILE COEFFICIENTIS)	10.600000
PRECICTED END POINT CHANGE(S) (TCTAL)	-592.795692
PREDIC TED ENO POINT CHANGE(S) CDUSC)	-1726.432968
PRECICTED END POINT CHANGE(S) (VIC)	1133.637283
CHANGE IN WEIGHI VIC	111.939734
CHANGE IN GAMMA R VIC	2.238795
FINAL STEP SILE COEFFICIENT	1.912763
OUSC FOR NEXT TRAJECTORY	2039.651367

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ITERATION
1 TRIAL
2 NETA=
6 LETA=
73

MAJORITY VOTE TEST
-1
TOO MANY FUNCTIONS WITH AOVERSE TRAVEL

next trajectcry will be a valic step
509.912842
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

ILYE	WELGET	ALILTUAE	GGMmA B＿	VELUCITY B	THRUSI	LIfr	DRAC
0	MACH NUMBER	WEIGHT FLCW	ALPHA	PITCH ANGLE			
15.722.	1162．914	14510.199	． 44.442	1791．874	5820.899	-123.223	． 1.429 .129
2409.748	1.694	25.000	－0．313	44.129			
17.410	1120.727	17099.265	44.322	1933.814	5902.731	1521.893	2311．304
2612.022	1.844	25．000	3.384	48.207			
18.218	＿1100． 523	－13216． 14.	44.994	＿＿－2000．000	5951.938	1297.23 C	2309．800
2691．984	1.915	25.000	3.213	48.207			

ITERATION 1 TRIAL 3 NETA＝ 36 LETA $=73$
majority vote test
0
theta table 11 lines

	$\begin{array}{r} -0.000000 \\ 65.780860 \\ 2.502500 \\ \hline \end{array}$	$\begin{array}{r} 67.828964 \\ 1.250000 \\ 60.429440 \end{array}$	$\begin{array}{r} 0.25 C C 00 \\ 64.7417 \mathrm{C} 3 \\ 3.125000 \end{array}$	$\begin{array}{r} 67.281850 \\ 1.625000 \\ 58.131699 \end{array}$	$\begin{array}{r} 0.500000 \\ 63.633300 \\ 3.687500 \\ \hline \end{array}$	$\begin{array}{r} 66.696447 \\ 2.00 .000 \\ 55.520065 \\ \hline \end{array}$	$\begin{array}{r} 0.875000 \\ 62.422361 \\ 4.250060 \end{array}$
\cdots	52.444272	4.812500	49.851157	5.375000	44.055149	5.541667	43.236309
ω	5.708333 57.170612	41.726336 6.263889	$5.875 C C 0$ 57.030365	49.142176 6.430555	0.041667	57.309796 0.59727	6.152778
	$\frac{57.170612}{6.847222}$	56．2832332	57．030365	55.4354317	56．819995	55.443798	－ 7.847222
	54.920916	8.409722	54.100331	8.972222	53.240920	4.815972	51.875994
	10.659722	50.434552	11.503471	48.943418	12.347222	47.453438	13.190971
	$\begin{aligned} & 46.046348 \\ & 18.217864 \end{aligned}$	$\begin{aligned} & 14.034721 \\ & 48.206633 \end{aligned}$	44.899603 1甘2．17Eとム2	$\begin{aligned} & 14.878471 \\ & 48.206633 \end{aligned}$	44.153043	15.722221	44.129181

RESTART TABLE

\mathbf{r}109.912842 0.050000	0.050000	-0.000000	17.344538	1066.386520	

TRAJECTCRY SUMMARY

Program setup. - The program is divided into nine logical blocks or links, where each link performs a particular job. These links are required to ensure that the program will fit into a 32 K core computer. Additional information is given in the section on program and data overlay.

Link 0: Controls the flow of the program from link to link and remains in core at all times. The link consists of the following subroutines:

LOAD	LOOK1D
ATMOS	UNITZ

BLOCK DATA

Link 1: All operations related to the forward trajectory are performed. The subroutines included in the link are:

AKSTP	EXEC	PLAC
ANPARP	FPROG	STEP1
ANPRTL	INITCO	STP1
BOOM	LOOK3D	TLD
CONTR		

Link 2: The numerical partial derivative check is made using the subroutine:
PRTIAL
Link 3: The control variable history for the nominal trajectory generation is made using the subroutine:

GUIDE
Link 4: The operations related to the automatic convergence logic are performed. The subroutines included in the link are:

KCALC	MATRX2	VALID
MATOUT	UCALC	VARIC
MATRIX		

Link 5: All operations and controls related to the backward trajectory are performed. The link consists of the following subroutines:

DVAL2	STEP2
LAMBDA	STP2

Link 6: This link performs the initialization that is required once per data case. The subroutines included are:

INITAL
TITLES
Link 7: The final output of trajectory data that is required only once per data case is performed. The subroutine called is

CARDS
Link 8: The last link controls the plotting of data and is called once per run. The subroutines used are

PLOTZ
SKALZ
A set of auxiliary subroutines are required for plotting similar to the Boeing numerical plotting system (NPS).

Organization of links: The organization of the computer links and the approximate core storage required are shown in figure 17. This chart shows that all links of origin one are called from the basic link 0 . Links 2 and 3 (origin two) are called only by the forward trajectory, link 1.

Figure 17. PROGRAM ORGANIZATION

Physically in the computer, links $1,4,5,6,7$, and 8 occupy the space beginning with the same storage location (ORIGIN ONE) but at different times as governed by the main program (LOAD). Similarly links 2 and 3 occupy the storage beginning with the same location (ORIGIN TWO).

Program deck: The recommended program deck setup is shown in figure 18. The control cards required for machine operation precede link 0 . The data deck for a given problem is placed following link 8.

To speed up the overlaying of links, two additional tape (or disk) units are used to store the program. The forward integration routines (links 1, 2, and 3) are stored on SYSLB3. The convergence logic routines (link 4) are stored on SYSC K1. All other links are stored on SYSUT2.

Data setup. - The setup of the data is performed as detailed in 'Input Data Preparation." The physical setup of the data deck is shown in figure 19. Note that each set of stage-dependent data must be preceded by an STG card. A STG card must be present for a stage even if no stage-dependent tables are input. The last card in the data deck is an END card.

General Machine Operation

Tape or disk requirements. - STOP may use a maximum of $10 \mathrm{I} / \mathrm{O}$ units during execution, excluding the system units reserved for input, output, punch, and normal link loading (i.e., SYNIN1, SYSOU1, SYSPP1, SYSUT2).

Listed in figure 20 is a brief description of all I/O units used - their prograr symbol, system name, function, mode, and buffer size. (Buffer sizes are set in subroutine UNITZ.)

Figure 21 shows the I/O units used during execution of a typical data case. This data case is set to complete 1 iteration (NARBY $=2$, NITC $=1$), punch the control table used for the last iteration (NC (8) =1), and plot the nominal and last iteration (NC (11) $=-1$).

End of run indication. - The program will normally exit successtully by reading an end of file on the input tape (SYSIN1). The monitor will print out the comment "END OF FILE READING." The program has the capability to run multiple data cases, and always terminates one case by trying to read the next.

Figure 18. PROGRAM SETUP

Figure 19. DATA DECK SETUP

* These units must be assigned to TAPE, as they may be saved

Figure 20. INPUT/OUTPUT (I/O) USAGE

Special machine operating information. - The two I/O units, KSCR and SYSCK2, must be assigned as physical tape units and comments inserted asking that these tapes be saved.

Routines Loaded From	Link Number	I/O Unit Read	I/O Unit Written	Purpose
CORE	0			
SYSUT2	6	KINP		Initialize data
SYSLB3	1	KDAT	KOUT KPAR KSCR KPLT	Forward integration of nominal
SYSCK1	4		KOUT	Majority vote test
SYSUT2	5	KPAR	KLAM KOUT KDAT	Backward integration
SYSCK1	4	KLAM		1. Steepest ascent logic 2. Build new control table
SYSLB3	1	$\begin{aligned} & \text { KDAT } \\ & \text { KTAN } \end{aligned}$	KOU'	Forward integration of try 1
SYSCK1	4	$\begin{aligned} & \text { KLAM } \\ & \text { KPAR } \end{aligned}$	KTAN KOUT KPAR	Analyze try 1, make another try or run valid step
SYSLB3	1	$\begin{aligned} & \text { KDAT } \\ & \text { KTAN } \end{aligned}$	KOUT KPAR KSCR KPLT	Forward integration of iteration 1
SYSUT2	7	$\begin{aligned} & \text { KSCR } \\ & \text { KDAT } \end{aligned}$	$\begin{aligned} & \text { KOUT } \\ & \text { KPUN } \end{aligned}$	Print and punch final output
SYSUT2	8	KPLT	KOUT SYSUT7 SYSCK2	Prepare plot tape
SYSUT2	6	KINP		Exits trying to read next data case

Note: KTAN will not be used if the control table used does not exceed 1000 points.

Figure 21. EXAMPLE OF I/O USAGE

The following control cards are required for each computer run, and must precede the program deck.

NOTE: (1) When NC(8) $\neq 0$, a comment card must be included with the control cards, asking that a save tape be mounted on B3.
(2) When plotting ($\mathrm{NC}(11) \neq 0$), a comment card must be included with the control cards stating that unit C 1 will contain the plot output.

Programming Information

Basic program flow. - The following flow charts are intended to give the user a general picture of the basic program organization and the subroutines called by each major area of the program. The flow charts are broken down into the logical areas of forward integration, reverse integration, and control logic.

Subroutine descriptions and flow diagrams.- Each of the subroutines in STOP is described giving the purpose and the numerical method if applicable. Other subroutines called by the one being described are listed. The approximate core storage used is indicated. The arguments of subroutines using a calling sequence are defined in detail. Flow charts showing the organization and detail of each routine are given.

AKSTP - AK Store

Purpose
AKSTP defines and calculates basic and frequently used variables in the program. These variables include some AK's, VAR's, partials, and trigonometric functions of angle of attack, latitude, flight path angle, and heading.

Subroutines Called

ATMOS BOOM LOOK1D TLD

Storage Used

$$
952 \text { cells }
$$

Purpose

The analytical partial derivatives of the placard equations of motion (part of the F array) are performed in ANPARP. These derivatives of F (placard) are with respect to all the state and control variables. See appendix B for an algebraic description of these partials.

Method

1) Derivatives of the placard equations with respect to the state variables are given as PFX(I, J) where I identifies the placard equations, and J identifies the derivative state variable; i.e., PFX(K25, K 4$)=\partial \mathrm{F}(\mathrm{K} 25) / \partial \mathrm{X}(\mathrm{K} 4)$.
2) Derivatives of the placard equation with respect to the control variables are given as PFU(I, J) where I identifies the placard equation of the F array, and J the derivative control variable; i.e., $\mathrm{PFU}(\mathrm{K} 25, \mathrm{I} 1)=\partial \mathrm{F}(\mathrm{K} 25) / \partial \mathrm{U}(\mathrm{I} 1)$.
3) All partials not calculated are set to zero.
4) Words not in COMMON computed in ANPRTL and required by ANPARP are transmitted through the calling sequence:

CALL ANPARP (PLPH, PLPV, PLPA, PLPS, PDPH, PDPV, PDPA, PDPS, PTPH, PTPV, PTPA, PTPT)
where the elements in the call are defined in appendix B.

Subroutines Called
BOOM

Storage Used
1,371 cells

ANPRTL - Analytical Partial Derivatives of the Equations of Motion

Purpose

The analytical partial derivatives of the equations of motion (excluding placard equations) are calculated in ANPRTL. These derivatives of the F array are with respect to all the state and control variables. Appendix B gives an algebraic description of these partials. ANPRTL is called from STP1 only during valid trajectories.

Method

1) Derivatives of the equations of motion with respect to the state variables are given as $\operatorname{PFX}(\mathrm{I}, \mathrm{J})$ where I identifies the equation of motion and J identifies the derivative state variable; i.e., $\mathrm{PFX}(\mathrm{K} 2, \mathrm{~K} 4)=\partial \mathrm{F}(\mathrm{K} 2) / \partial \mathrm{X}(\mathrm{K} 4)$.
2) Derivatives of the equations of motion with respect to the control variables are given as PFU(I,J) where I identifies the equation of motion and J identifies the derivative control variable; i.e., $\mathrm{PFU}(\mathrm{K} 2, \mathrm{I} 1)=\partial \mathrm{F}(\mathrm{K} 2) / \partial \mathrm{U}(\mathrm{I} 1)$.
3) All partials not calculated are set to zero.

Subroutines Called
ANPARP

Storage Used

1,649 cells

A

ATMOS - Atmosphere Calculations

Purpose

ATMOS calculates atmospheric pressure, temperature, density, and speed of sound. Any atmosphere may be used; however, the calling sequence must be the same as presently used.

Method

The ATMOS subroutine normally used in the program is an analytical representation of the 1962 ARDC standard atmosphere.

The call to ATMOS is made with input and output variables transmitted through the calling sequence, i.e.,

CALL ATMOS (H, VA, P, D, T)
where $\quad \mathrm{H}$ is the altitude, ft
VA is the speed of sound, fps
P is the pressure, psf
D is the density, slugs $/ \mathrm{ft}^{3}$
T is the temperature, deg Rankine

Limitation

This ATMOS subroutine is a modified version of the complete 1962 ARDC standard atmosphere. Because of a limiting altitude of 157,000 feet and other simplifications, the modified ATMOS is considerably faster than the complete atmosphere with little or no loss of accuracy within the bounds of common application. Other ATMOS subroutines are presented in reference 9.

Storage Used

250 cells

Purpose

This subroutine is provided for input of numerical constants and alphanumeric printout titles, which are required by the program and are not case dependent. These variables are set once for each computer run.

Method

All constants and titles are input by data statements.

BOOM - Sonic Boom Overpressure and Placard Determination

Purpose

BOOM calculates the sonic boom overpressure and determines the equation of motion for the overpressure violation in the path of the aircraft.

Method

Sonic boom overpressure on the ground is determined for the conditions along the flight path. The sonic boom penalty function is calculated by the method discussed in the analytical development section on enroute constraints. The terminal value of the penalty function (auxiliary state variable) must be constrained to zero. Location of the shock signature on the ground is determined as a function of the longitude, latitude, and aircraft flight conditions.

Assumptions and Limitations
The overpressure violation is calculated at an odd number of points so that both maximum lateral cutoff points and the midpoint are included. The number of points is selected by setting $\mathrm{NC}(75)=$ number of points. If $\mathrm{NC}(75)$ is even, the number of points calculated is $\mathrm{NC}(75)+1$. If too few points are selected, a region where the placard should be violated may slip through the mesh without being detected.

Subroutines Called

PLAC

Storage Used
298 cells

BOOM

CARDS - Card Output Routine

Purpose

CARDS is called at the end of each data case and is assigned the following tasks:

1) Recover control table from last valid trajectory from KSCR unit and print and punch control table and restart table;
2) Recover trajectory summary from KDAT unit and print trajectory summary table.

Method

The control variable table is recovered by backspacing the KSCR unit to the start of the last valid trajectory and reading the control history into core. The restart table is built from convergence information in COMMON. The control table is then punched in octal format (in order to maintain sufficient accuracy) and the restart table is punched in decimal format (for ease in modification if required).

The trajectory summary is obtained from the KDAT unit which was written by LAMBDA at the end of each valid iteration.

Storage Used
681 cells

CONTR - Open Loop Control Variable Calculation

Purpose

CONTR performs a table lookup for the control vector (\bar{u}) in the TMMEU array at each new time point as required by the integration package.

Method

The control variables obtained are specified by the setting of NC's 77 through 80 for θ, φ, η, and Λ respectively. An NC set to 0 indicates the control variable is not required, set to 1 indicates the control variable is used. Values of the variables as functions of time are obtained by linear interpolation from the control variable table which is either input or generated by the program. For the nominal trajectory, if $\mathrm{NC}(13)=0$, the control variables are calculated as described above; but if $N C(13) \neq 0$, the control variables θ or η are calculated in the GUIDE subroutine and override the value looked up by CONTR. CONTR is called prior to GUIDE.

Assumptions and Limitations

The control variables are obtained by a linear table look-up. The table look-up package does not extrapolate so the user must input data that will not permit a table overrun.

Subroutines Called

GUIDE

Storage Used
197 cells

DVAL2 - Adjoint Variable Derivative Evaluation

Purpose

The derivatives of the adjoint variables and the integrated payoff sensitivities are evaluated for the reverse integration.

Method

The differential equations for the adjoint variables are evaluated as discussed in the section on the steepest-ascent method. The partial derivative PFX or PFU and the control variables \bar{u} were stored as functions of time during the forward trajectory. Because this subroutine is important for the basic understanding of the computer evaluations of the adjoint variables, weighting matrices, and I matrix, the computer language for important variables will be given.

The array of all derivatives evaluated during the backward integration, the FB array, is constructed with elements for $\dot{\Lambda}$ given by

$$
\dot{\Lambda}=-F^{\prime} \Lambda
$$

where
F \equiv PFX matrix
$\Lambda \equiv \mathrm{XB}$ array
The derivatives for the elements of the I matrix are

$$
\begin{aligned}
\frac{d I}{d t} & =\text { XXDOT array } \\
& \left.=\Lambda^{\prime} G W^{-1} G^{\prime} \Lambda \text { (from equation } 109\right)
\end{aligned}
$$

where
$\Lambda \equiv$ XXLAM matrix (given by equation 110)
G \equiv PFU matrix
$\mathrm{W}^{\mathbf{- 1}} \equiv$ VINP array
The derivatives of the elements for the automatic weighting are evaluated by

$$
\frac{\mathrm{d} \mathbf{S}_{\mathrm{u}}^{\infty}}{\mathrm{dt}}=\left|\mathrm{S}_{\mathrm{u}}^{\varphi}\right| \text { (from equations } 98 \text { and } 134 \text {) }
$$

where

$$
\begin{aligned}
\mathrm{s}_{\mathrm{u}}^{0}(\mathrm{t}) & \left.\equiv \mathrm{G}^{\prime} \lambda_{\varphi \Omega} \quad \text { (equation } 130\right) \\
& \equiv \operatorname{PFU}(\mathrm{I}, J) * \operatorname{XXLAM}(\mathrm{I}, 1)
\end{aligned}
$$

The elements of the UULAM matrix are the weighted impulse responses of the constraints and performance to the control variables as given by $W^{-1} G^{\prime} \Lambda$. The call to DVAL is made through the calling statement.

CALL DVAL (UULAM)

Note: When a single-dimension array is used to store the elements of a matrix, the elements of the matrix are stored by rows.

Subroutines Called

> LOOKID

Storage Used
1229 cells

EXEC - Forward Integration Flow

Purpose

EXEC is called at the start of every forward trajectory. The basic purpose is to control the program flow in performing the forward trajectory. To accomplish this, the following tasks are accomplished.

1) Read nonstage-dependent data from KDAT;
2) Initialize state variable array;
3) Read stage-dependent data from KDAT;
4) Position KDAT past last written trajectory summary at start of last stage only;
5) Initialize the state variable derivative array;
6) Integrate to end of stage or XSTP for last stage. Control data overlay is accomplished as required by reading blocks of data from KTAN.

Method

Integration of the forward trajectory utilizes the variable step Runge-Kutta option of STEP1. The final step to XSTP is ite rated using the fixed step option until X (NST) is within EPSLN of XSTP.

Subroutines Called

AKSTP
CONTR

FPROG
INITCO
STEP1
STP1

Storage Used
665 cells

Purpose

FPROG calculates the entire F array, which consists of the equations defining the derivatives of the state variables and placards with respect to time. See appendix B for an algebraic definition of the F array.

Method

1) All state variable derivatives with respect to time are calculated directly in FPROG. The placard derivatives, however, are calculated in the PLAC subroutine called by FPROG.
2) The value of the placard required in the evaluation of the placard derivatives is obtained by a table look-up.
3) The array is initially zeroed so that only the calculations performed in a given case may have nonzero values.

Note: The sonic boom placard, F(K35) is not determined in FPROG but by the subroutine AKSTP (which calls BOOM which, in turn, calls PLAC).

Subroutines Called

PIAC

Storage Used
677 cells

GUIDE - Closed Loop Guidance Control Variables

Purpose

GUIDE calculates control variables for generating a nominal flight path.

Method

The NC (13) controls the manner in which nominal trajectory is generated. The GUIDE subroutine is called only for the nominal trajectory, if NC (13) $\neq 0$. If the first stage is a tilt maneuver, GUIDE is bypassed. The number of phases used to generate the nominal is given by NC (13). Corresponding to each of the phases, a guidance mode and phase stopping condition must be specified. The provision is made to allow the phase stopping condition to be approached from below or above. The guidance modes are discussed under 'Nominal Trajectory Generation."

Assumptions and Limitations

A maximum of 12 phases may be used to generate the nominal flight path. Five tables have been reserved for guidance modes. The equations solved for the control variables are linearized as described under "Nominal Trajectory Generation."

Subroutines Called

AKSTP LOOK1D

Storage Used
657 cells

GUIDE

INITAL - Initial Data

Purpose

INITAL is called once at the beginning of a data case and performs the following tasks in the order listed below.

1) Read the title card;
2) Initialization of important program indicators and arrays;
3) Read the control card, NC array, and initial condition data;
4) Set the forward integration error limits;
5) Read the stage-dependent and constraint-dependent parameters;
6) Print the initial conditions and stage-dependent parameters;
7) Construct heading block for printout from subroutine MATOUT;
8) Print optimization and stopping condition parameters;
9) Read and print free initial condition parameters if necessary;
10) Read and print phasing guidance parameters if necessary;
11) Print control parameters;
12) Read and print nonstage-dependent tables (including control variable and restart tables). Store part of control variable table on KTAN unit if necessary;
13) Store nonstage-dependent tables (except control variable and restart tables) on KDAT unit;
14) Read and print stage-dependent tables and store on KDAT unit.

TITLES

Storage Used
2692 cells

Parameters
(If There Are
Constraints)
Calculate
GR
OMEGA

INITCO - Initialize State Variables

Purpose

This subroutine is called at the start of each stage and is assigned the following tasks:

1) Initialize the X array at the start of stage 1 ;
2) Update the free elements in the X array at the start of stage 1 ;
3) Initialize weight at the start of every stage;
4) Update weight at the start of each stage if weight is a free initial condition.

Method
The XO array is used to initialize X at the start of stage 1 and the WO array is used to initialize the weight at the start of each stage. The input WO and XO arrays are updated in VALID using the values of DEIX computed by VARIC.

Storage Used
117 cells

KCALC - Step Size Logic Subroutine

Purpose

This subroutine is called following every try if MATRIX determines a nonnegative majority vote. KCALC is assigned the following tasks:

1) Compute maximum allowable constraint motion;
2) Set $L(6)$ for next trajectory;
3) Compute step size coefficient (COEFK) for next trajectory.

METHOD

KCALC computes the step size coefficient based on performance and constraint linearities using the parabolic curve fitting method described in appendix C. Maximum step size coefficients are also determined based on the maximum allowable travel of each constraint. The best step size is then determined for the next trajcctory.

Variables not in COMMON are transmitted between MATRIX and KCALC through the calling sequence

CALL KCALC (DPSI, DPSIP, PSIBWD, PSIFWD, PSIK, PSIKTR, PSINL, XX)
where:
DPSI $\quad=$ change in constraint end points
DPSIP $\quad=$ predicted change in constraint end points
PSIBWD = nondimensional allowable change of a constraint in direction of desired constraint value

PSIFWD = nondimensional allowable change of a constraint in direction away from desired constraint value

PSIK $\quad=$ constraint step size coefficients
PSIKTR = maximum step size coefficients of constraints due to maximum permissible travel

PSINL = constraint nonlinearities
$\mathrm{XX} \quad=$ current end point values

Storage Used

LAMBDA - Reverse Integration Flow Controller

Purpose

LAMBDA controls the flow of the program during the backward integration.

Method

The adjoint variables are initialized prior to performing the backward integration. The automatic weighting matrix is calculated using the method described under "Automatic Weighting Matrices."

Subroutines Called
DVAL2
STP2
STEP2

Storage Used
518 cells

LOAD - Main Program

Purpose

LOAD controls the program flow from link to link and causes links to be overlayed.

Method

The program is broken into nine links, each performing a specific function.

Link No.	Purpose of Link
0	General program flow
1	Performs forward integration; called once per trial
2	Numerical partial check link
3	Closed-loop guidance link
4	Performs the steepest-ascent calculations; called once per trial and twice per valid trajectory
5	Controls program flow for reverse integration; called once per valid trajectory
6	Initilization, called once per data case
7	Performs final output of trajectory data; called once per data case
8	Controls the plotting routines; called once per computer run

Subroutines Called

LOOK1D - One-Dimensional Table Lookup

Purpose

LOOK1D provides a table lookup technique for tables that have one independent variable and NDV dependent variables.

Method

Given a value for the independent variable, the subroutine will furnish the dependent variable values and their partial derivatives with respect to the independent variable. Extrapolation is performed if the table limits are exceeded.

The call is made to LOOK1D through a calling sequence.

Call LOOK1D (NDV, KK, XQ, Y1, Y2, Y3, Y4, Y5, S1, S2, S3, S4, S5)
where
NDV = number of dependent variables
$\mathrm{KK}=$ location of the first entry in the tables, NDS (table no.)
$\mathrm{XQ}=$ value of the independent variable
$\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4, \mathrm{Y} 5=$ values of the dependent variables
S1, S2, S3, S4, S5 = values of the slopes of the dependent variables with respect to the independent variable

Assumptions and Limitations

1) The lookup method is based on linear interpolation.
2) The maximum number of dependent variables (NDV) is five.

Storage Used
229 cells

LOOK3D - 3D Table Lookup

Purpose

LOOK3D provides a method for linearly interpolating in a table to obtain a dependent variable as a function of up to three independent variables, i.e., $W=F(X, Y, Z)$.

Method

Given the three values of the independent variables, the routine calculates the dependent variable and the slopes (derivatives) of the dependent variable with respect to the three independent variables. Linear extrapolation is performed in cases where the table limits are exceeded.

The call to LOOK3D is made through a calling sequence.
LOOK3D (NTAB, ZIND, XIND, AIND, YY, SLZ SLY, SLX)
where

$$
\begin{aligned}
& \mathrm{NTAB}= \text { table number } \\
& \mathrm{ZIND}= \text { value of the independent variable out of the plane } \\
& \mathrm{XIND}= \text { value of the independent variable between curves on a given } \\
& \text { plane } \\
& \mathrm{AIND}= \text { value of the independent variable that is the abscissa of the } \\
& \text { curves } \\
& \mathrm{YY}= \text { value of the dependent variable } \\
& \mathrm{SLZ,SLY,} \mathrm{SLX} \mathrm{=} \mathrm{slopes} \mathrm{of} \mathrm{the} \mathrm{dependent} \mathrm{variable} \mathrm{corresponding} \\
& \text { to ZIND, XIND, AND AIND, respectively }
\end{aligned}
$$

Assumptions and Limitations

The dependent variable is obtained from the input data by linear interpolation and the slopes by a forward difference technique. The lookup package can be used to obtain the dependent variable as a function of one or two independent variables also.

MATOUT - Matrix Output

Purpose

MATOUT prints convergence information that appears following each trial or valid step. The printout includes information such as current end-point values, constraint travel indicators, constraint changes, constraint tolerances, predicted constraint changes, step size coefficients, and other data.

Information not in COMMON is transmitted between MATRIX and MATOUT through the calling sequence

CALL MATOUT (DBETA, DPSI, DPSIP, IMAJ, INDTVL, PSIBWD, PSIFWD, PSIK, PSIKTR, PSINL, XLAMDX, XX)
where:
DBETA $=$ the change in constraints modified by the end point changes due to the variation of initial conditions

DPSI $\quad=$ actual change in constraints measured from a previous valid step

DPSIP $\quad=$ predicted change in the constraint end points
IMAJ $\quad=$ value of the majority vote
INDTVL $=$ constraint travel indicator
PSIBWD = nondimensional allowable change of a constraint in the direction away from the desired constraint value

PSIFWD = nondimensional allowable change of a constraint in the direction of the desired constraint value

PSIK $\quad=$ constraint step size coefficients
PSIKTR = constraint step size coefficients based on maximum permissible constraint travel

PSINL $\quad=$ constraint nonlinearities
XLAMDX $=$ predicted change in the constraints due to variable initial conditions.
$\mathrm{XX} \quad=$ array of constraint end points

Storage Used

1202 cells

MATRIX - Basic Steepest Ascent Subroutine

Purpose

MATRIX is called at the end of every valid trajectory, reverse integration, and trial trajectory. After a valid trajectory, MATRIX calls VALID to examine the results (see VALID). After a reverse integration, MATRIX performs the following tasks:

1) Recovers the I matrix from the XB array
2) Calls MATRX2 to invert $I_{\psi \psi}$ matrix
3) Computes minimum allowable DUSQ
4) Calls VARIC to compute new DELX array
5) Updates iteration counter (ITC)
6) Writes arrays required for trials on KPAR unit for temporary storage
7) Computes Lagrange multipliers
8) Calls UCALC to update control history
9) Calls MATOUT to print convergence information

Following each trial, MATRIX performs the following tests:

1) Reads arrays from KPAR unit written after the previous reverse integration
2) Examines the try to see if it passes the majority vote test. If the test fails, a new trial is attempted
3) Calls KCALC to determine the step size coefficient for the next rajectory
4) Performs steps 7, 8, and 9 above.

> Method

The steepest ascent method and the convergence logic used in MATRIX are explained in detail in the analytical development section and appendix C

Subroutines Called

KCALC
MATOUT

MATRX2
UCALC

Storage Used

$$
3454 \text { cells }
$$

MATRX2 - Matrix Inversion Subroutine

Purpose

MATRX2 computes the solution of a set of simultaneous linear equations, the inverse of a matrix, or the value of a determinant.

Method

The solution of a simultaneous linear equations follows from

$$
\mathrm{B}=\mathrm{AX}
$$

or solving for X

$$
X=A^{-1} B
$$

Thus, the inverse is required for the solution, and the determinant of A is required for the inverse of A. The matrix operations are all performed in double-precision. Matrix inversion uses the Gaussian elimination method.

The call to MATRX2 is made through a calling sequence

> CALL MATRX2 (N, LN, LM, A, B, E, D, MM)
where N - the order of the matrix A

$$
\begin{aligned}
& \mathrm{LN}= \text { number of rows in the dimension statement for matrices } \mathrm{A} \\
& \text { and } \mathrm{B}, \mathrm{i} . \mathrm{e} ., \mathrm{A} \text { is an } \mathrm{LN} \mathrm{x} \mathrm{LM} \text { matrix. } \\
& \mathrm{LM}= \text { number of columns in matrix } \mathrm{B} \\
& \mathrm{~A}= \text { array designation for matrix } \mathrm{A} \\
& \mathrm{~B}= \text { array designation for matrix } \mathrm{B} \\
& \mathrm{E}= \text { an array used as temporary storage of a column matrix } \\
& \mathrm{D}= \text { value of the determinant of } \mathrm{A} \\
& \text { if } \mathrm{D}=0 \text { the determinant is not computed } \\
& \mathrm{D}=1 \text { the determinant is computed } \\
& \mathrm{D}= \text { a scale factor, the determinant equals the value of the } \\
& \text { determinant times the scale factor }
\end{aligned}
$$

$\mathrm{MM}=$ error indicator
1 if solution is successful
2 if overflow occurred
3 if matrix is singular
The answers or the X matrix replace the original A matrix.

Assumption and Limitations

The size of the problem that can be solved is limited only by machine storage space.

Storage Used
596 cells

PLAC - Placard Equation Evaluation

Purpose

Subroutine PLAC is called from FPROG for each selected enroute constraint and performs the following tasks.

1) Compares the constrained variable with the allowable limits from the input placard table
2) Computes the placard equation of motion value and updates the appropriate element of the F array
3) Stores the placard limit value and the slopes of the limit value with respect to its independent variables (obtained from the input placard table) in the S array.

Method

The call to PLAC is made through the following calling sequence:
CALL PLAC (II, ITAB, KTAB, A1, A2, A3, A4)
where II = F array index corresponding to the selected placard. II is computed by FPROG.
$I T A B=$ first table number containing the placard values for the selected placard. ITAB is computed by FPROG.
$\mathrm{KTAB}=$ number of independent variables defining the input placard table. KTAB may be 1,2 , or 3 , depending on the placard formulation.

A1 = Value of the independent variable for a one dimensional table or the value of the "plane" for a three dimensional table.

A2 = Value of the "curve" for a 3-D table. A2 $=0$. for a 1-D table.
A3 = Value of the abscissa ('point") for a 3-D table. A3 $=0$. for a 1-D table.

As an example, the calling sequence for the $Q_{\text {LIMIT }}=F(t)$ placard is

> CALL PLAC (II, ITAB, 1, T, 0., 0., AK(4)).

For the $\mathrm{N}_{\text {LIMIT }}=\mathrm{F}(\mathrm{H}, \mathrm{M})$, the call is
CALL PLAC (II, ITAB, 2, 0., X(K2), AK(5), UI3).

Note that if the 3-D option is used for a 2-D table, the value of the "plane" is set to zero.

PLAC will set $F(I I)=0$. if the limit value is not exceeded or to (LIMIT $\mathrm{A} 4)^{2}$ if the limit is exceeded.

PLAC also computes elements in the S array as follows:
$S(I, 2)=$ limit value exceeded (max. or min.) .
$S(I, 3)=$ slope of limit value with respect to A1 (from the input placard table).
$S(\mathrm{I}, 4)=$ slope of limit value with respect to A2.
$S(1,5)=$ slope of limit value with respect to A3.
I is the internal index for the selected placard ($\mathrm{I}=1, \mathrm{NPF}$) and is computed by PLAC.

Subroutines Called
LOOK1D LOOK3D

Storage Used
216 cells

PLOTZ - Plotting Subroutine

Purpose

PLOTZ controls the plotting operations for the Orthomat and SC 4020 plotters. Operations for scales, headings, titles, etc., are included.

Limitations

1) The maximum number of plots is limited to seven
2) Six curves maximum per plot
3) Multiple-data cases cannot be plotted
4) X- and Y-axes annotation occurs every 2 cm
5) Titles consist of the following:

LINE 1 -
DEP. VAR. NAME VS. IND. VAR. NAME

LINE 2 -

The first 72 characters taken from title card on the data deck.

Subroutines Called
SKALZ

Boeing numerical plotting system (NPS) subroutines called

CAMERA ORTHPP
SLLILI
PAUSE
PSLILI

NOSLIB
AXLILI
NWPAGE
GDLIL
FORM

TITLEB BORDER SCPP NOSLIL

Storage Used
1436 cells

PRTIAL -Numerical Partial Derivative Check

Purpose

PRTIAL calculates the partial derivatives of all of the equations of motion for state and placard variables with respect to each of the state variables and control variables. These are used for checking the analytical partial derivatives used in the steepest-ascent method (see appendix B).

Method

The numerical partial derivatives are evaluated using a linear approximation by perturbing the state or control variable about the present value. The perturbations are made both positive and negative from the mean value. For example, if $z=f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, where y_{i} is either a state or control variable, the numerical partial derivative is given by
$\frac{\partial z}{\partial y_{i}}=\frac{f\left(y_{1}, y_{2}, \ldots, y_{i}+h, \ldots, y_{n}\right)-f\left(y_{1}, y_{2}, \ldots, y_{i}-h, \ldots, y_{n}\right)}{2 h}$
where h is the perturbation increment.

Subroutines Called

AKSTP FPROG

Storage Used
743 cells

SKALZ - Plot Scales

Purpose

SKALZ determines the scales for plotting.

Method

Scales are based upon the number of divisions allowed and the variable range covered. The call to SKALZ is made through the calling sequence.

CALL SKALZ (DIV, DMAX, DMIN, SDIV, SMAX, SMIN, STEPP, DIST)
where DIV $=$ maximum number of subdivisions that may be used
DMAX $=$ maximum value of independent or dependent variable
DMIN $\quad=$ minimum value of independent or dependent variable
SDIV $\quad=$ number of divisions used for x or y axis $(<$ DIV $)$
SMAX $\quad=$ maximum value of independent or dependent variable (\geq DMAX)

SMIN $\quad=$ minimum value of independent or dependent variable (\leq DMIN)

STEPP $=$ step size between successive annotation on an axis (SMAX-SMIN/SDIV)

DIST $=$ distance to alter the origin of axis given in onedivision increments, (DIV-SDIV)/2.

Storage Used
412 cells

Find Power Of 10 (ISF)
So DELT/10 **ISF Lies Between 1 And 9

Calculate Step Size As 2., 4. Or 10 Times 10 To ISF Power

A

STEP1 - Integration Of Forward Trajectory

Purpose

STEP1 integrates the equations of motion defining the state variable.

Mcthod

The integration package is a variable-step Runge-Kutta. The Runge-Kutta technique is basically a fourth-order method that is mechanized to vary the integration interval based on two half-step intervals as compared with the full step. This system evaluates the NV derivatives 11 times per integration interval. Only the basic NV equations of motion are integrated using the 11-point method. The other equations of motion are integrated using only four evaluations of the derivatives to save computer time. A complete writeup of the RKVS method is given in reference 8.

Assumptions and Limitations

The minimum step size is specified by the user.

Subroutines Called

AKSTP CONTR FPROG STP1

Storage Used
1179 cells

STEP2-Adjoint Equation Integration

Purpose

STEP2 integrates the adjoint equations of motion backwards along the trajectory.

Method

Integration is performed using a modification of the Runge-Kutta variablestep technique given in reference 8.

The call to STEP2 is made through the calling statement
CALL STEP2 (UULAM)
where UULAM is a matrix of the weighted impulse response.

Subroutines Called
DVAL2 STP2

Storage Used

2323 cells

Purpose

STP1:

1) Calculates many of the AK variables, including metric conversions and transforms relative state variables to inertial coordinate system;
2) Performs the circular satellite option calculations;
3) Stores partials and plotting data on tape;
4) Tests for maximum stopping time;
5) Controls phases for nominal-guidance modes;
6) Controls printout of forward trajectory.

Subroutines Called
ANPRTL

Storage Used
867 cells

Purpose

STP2 controls the storage and printing of the influence coefficients during the reverse integration.

Method

The option to print the adjoint variables is made by the user ($\mathrm{NC}(7) \neq 0$). The print interval is selected and printing is done only at the completion of an integration interval. Storage of the influence coefficients for use in determining the new control variable history is performed. The partial derivatives stored during the forward trajectory are called from storage and placed in core for use by DVAL2.

The UULAM matrix which is computed in DVAL2 is transmitted to STP2 through the calling sequence

CALL STP2 (UULAM)
where

$$
\operatorname{UULAM}=W^{-1} G^{\prime} \boldsymbol{\Lambda}
$$

Assumptions and Limitations
The maximum number of points that may be stored is $13590 /$ NUP1, where NUP1 is the number of control variables plus 1.

Storage Used
478 cells

Purpose

TITLES is called from INITIAL once per data case and performs the following tasks:

1) Constructs the packed array of headings (DESXUP) from the DESXUK array;
2) Converts the input NC(121) through NC (160) values to internal state variable indicies;
3) Constructs the plot headings for the PLTNAM array;
4) Calculates the number of equations of motion (NEOM), placards (NPF), state variables (NX), control variables (NU), and auxiliary printout variables (NK) selected by the user.

Method

All information required by TITLES is available in the input NC array and the DESXUK array compiled in subroutine BLOCK.

Storage Used
363 cells

TLD - Thrust, Lift, and Drag Calculations

Purpose

TLD calculates thrust, fuel flow, and aerodynamic coefficients as required by the options. It also calculates some VAR's and partial derivatives as required to perform the above calculations.

Method

TLD uses the NC's input to determine the options to be used for calculating thrust, fuel flow, and aerodynamic coefficients. Body axes data is converted to wind axes for use in the program. Thrust, fuel flow, and aerodynamic coefficients data are obtained by table lookups.

Assumptions and Limitations

For thrust options 3 to 9 , thrust and fuel flow data are tabulated for one engine only. If more than one engine is used, the thrust will be multiplied by the number of engines as input.

Subroutines Called

LOOK1D LOOK3D

Storage Used
1,419 cells

UCALC - Control Variable History Update

Purpose

UCALC is assigned the task of computing the control variable history for the next trajectory.

Method
The control variable history used to generate the last valid trajectory and the impulse response history computed during the last backward integration is recovered from the KLAM unit. The Lagrange multipliers are used to compute a new control history by

$$
\overline{\mathrm{u}}_{\mathrm{NEW}}=\overline{\mathrm{u}}_{\mathrm{OLD}}+[\text { UULAM }]\left[\frac{\mu_{\mathrm{s}}}{\gamma_{\mathrm{S}}}\right]
$$

and $\bar{u}_{\text {NEW }}$ is stored on the KPAR unit. Next the first part of $\bar{u}_{\text {NEW }}$ that will fit in core is stored in TIMEU and the remainder is written on the KTAN unit. STP1 reads KTAN to accomplish the control history data overlay in the TIMEU array.

The Lagrange multipliers, computed in MATRIX, are transmitted to UCALC by

CALL UCALC (XMU)

where
$\mathrm{XMU}=$ the array of Lagrange multipliers

Storage Used
532 cells

VALID - Valid Step Monitor

Purpose

VALID is called from MATRIX at the end of every valid step and is assigned the following tasks:

1) Decides whether to accept or reject the valid step.
2) Update free initial condition state variables.
3) Tighten temporary tolerance bands.
4) Updates INDSIC array.
5) Updates CPSI array.

Method
A detailed description of the logic used by VALID is given in Appendix C. If VALID decides to accept the valid step, switches are triggered to allow a reverse integration. If the valid step is rejected, the KSCR and KPLT units are backspaced to the start of the previous iteration. The new valid trajectory then will replace the rejected one.

Elements not in COMMON are transmitted between MATRIX and VALID through the calling sequence

CALL VALID (DBETA, DPSI, DPSIP, INDTVL, XMU, XLAMDX, XX) where

DBETA	$=$ the change in constraints modified by the end point change due to the variation of initial conditions
DPSI	```= actual change in constraints measured from a previous valid step```
DPSIP	$=$ predicted change in the constraint end points
INDTVL	= constraint travel indicator
XMU	$=$ array of Lagrange multipliers, $\left[\bar{\mu}_{\mathrm{S}}, \bar{\nu}_{\mathrm{S}}\right]$
XLAMDX	$=$ predicted change in the constraints due to variable initial conditions
XX	$=$ array of constraint end points

Purpose

VARIC computes the direction and magnitude to perturb the free initial conditions to improve performance and also controls the maximum payload option. This subroutine is called after every reverse integration and results in an update of the DELX array.

Method
The method used in VARIC is discussed in detail in the analytical development section.

Data not in COMMON and computed in MATRIX are transmitted to VARIC by

CALL VARIC (SFISSD)
where
SFISSD $=d \bar{\psi}^{\prime} I_{\psi \psi}^{-1}$

Storage Used
284 cells

Program Flexibility. - One of the main features of STOP is its flexibility. The program has been modularized on both the macro and micro levels. On the macro level, for instance, the steepest-ascent block of the program is linked to the equations of motion by only one subroutine, ANPRTL. Thus, the entire equations of motion block may be altered or even replaced without requiring any changes in the steepest-ascent block. Every attempt has been made to assign one task to each subroutine, and to make each subroutine as independent as possible from the others. Finally, the flow has been organized so that there is one subroutine that is called once per data case, INITAL; another called once per stage, INTTCO; one called once per forward trajectory, EXEC; etc.

On the micro level, the equations of motion and partial derivatives are modularized. This feature allows the selection of any subset of the 40 available equations for a given problem. Also, equations may be added or deleted easily. A few examples of the program flexibility are given below.

Example 1: Additional printout variable example: Suppose it is desired to print, Beta $=\sqrt{\left|\mathrm{M}^{2}-1\right|}$, which is not currently available in the AK array. $\mathrm{AK}(39)$, not in current use, is available for growth.

Step 1. In subroutine STP1 add the FORTRAN statement
$\operatorname{AK}(39)=$ SQRT (ABS (AK(5)**2-1.))
Step 2. In subroutine BLOCK put the words ($(\checkmark \checkmark \checkmark$ BE) and (TA $\checkmark \checkmark \checkmark \checkmark)$
in DESXUK (159) and DESXUK(160), respectively.
Step 3. Set $\mathrm{NC}(119)=1$ in the input data deck. This selects
$\mathrm{AK}(39)$ to be printed in the forward trajectory output.

No other changes are required.
Example 2: Additional placard example: Suppose it is desired to constrain the weight flow, which is not currently an available placard. X(K37) is an available state variable for placard additions.

Step 1. In subroutine FPROG, after the two FORTRAN statements:

37 CONTINUE

$$
\operatorname{ITAB}=I T A B+2
$$

add a call to subroutine PLAC. If the \dot{W} limit is a function of time, the call would be,

> CALL PLAC(II, ITAB, 1, T, 0., 0., AK(7))

Step 2. In subroutine ANPARP, after the statement:
add the partials of $F(\mathrm{~K} 37)$ with respect to each state and control variable. Note that the call to PLAC generates $\mathrm{F}(\mathrm{K} 37)=$ ($\left.\dot{\mathrm{W}}-\dot{\mathrm{W}}_{\text {limit }}\right)^{2}$ for the portion of the trajectory where the fuel flow exceeds the limit value(s). Some typical partials are:

$$
\begin{aligned}
& \frac{\partial F(K 37)}{\partial H}=2\left(\dot{W}-\dot{W}_{\text {limit }}\right) \frac{\partial \dot{W}}{\partial H} \\
& \frac{\partial F(K 37)}{\partial V}=2\left(\dot{W}-\dot{W}_{\text {limit }}\right) \frac{\partial \dot{W}}{\partial V} \\
& \frac{\partial F(K 37)}{\partial \theta}=2\left(\dot{W}-\dot{W}_{\text {limit }}\right) \frac{\partial W}{\partial \alpha} \frac{\partial \alpha}{\partial \theta} \\
& \frac{\partial F(K 37)}{\partial \eta}=2\left(\dot{W}-\dot{W}_{\text {limit }}\right) \frac{\partial \dot{W}}{\partial \eta} \\
& \text { or in FORTRAN }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{TERM}=2 *(\operatorname{AK}(7)-\mathrm{S}(\mathrm{I}, 2)) \\
& \operatorname{PFX}(\mathrm{K} 37, \mathrm{~K} 2)=\mathrm{TERM} * \operatorname{VAR}(35) \\
& \operatorname{PFX}(\mathrm{K} 37, \mathrm{~K} 4)=\mathrm{TERM} * \operatorname{VAR}(36) \\
& \operatorname{PFU}(\mathrm{K} 37, \mathrm{I} 1)=\mathrm{TERM} * \operatorname{VAR}(37) * \operatorname{VAR}(41) \\
& \operatorname{PFU}(\mathrm{K} 37, \mathrm{I} 3)=\mathrm{TERM} * \operatorname{VAR}(38)
\end{aligned}
$$

Step 3. In subroutine BLOCK the heading for \dot{W} penalty function, which consists of the words ($/ \checkmark W / D \varnothing$) and ($T / P F / \sqrt{ }$), is placed in DESXUK(75) and DESXUK(76), respectively.
Step 4. Set $\operatorname{NC}(157)=-1,1$, or 2 in the input data deck depending upon the type of limit desired, i.e., minimum, maximum, or corridor respectively.

Step 5. Add a placard table to the data deck for the fuel flow limit.
Example 3: Equation replacement example: It is a relatively straightforward procedure to replace the complete equation of motion block. This capability is demonstrated in the example below.

Consider a cat standing on a free-wheeling disk at point A as shown in figure 22. The cat wishes to get to point B on the disk in minimum time. The cat is constrained to the disk for the entire mission. The properties of the cat are

Figure 22. CAT ON A DISC PROBLEM

$$
\begin{aligned}
& \mathrm{m}=0.5 \text { slug } \\
& \mathrm{F}=1 \mathrm{lb}
\end{aligned}
$$

and the properties of the disk are

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{o}}=10 \mathrm{ft} \\
& \mathrm{r}_{\mathrm{i}}=7 \mathrm{ft} \\
& \mathrm{I}=70 \text { slug } \mathrm{ft}^{2}
\end{aligned}
$$

The pertinent equations of motion are:

$$
\begin{aligned}
\dot{\mathrm{r}} & =\mathrm{U} \\
\theta & =\mathrm{V} / \mathrm{r} \operatorname{DEG} \\
\dot{\mathrm{U}} & =\mathrm{V}^{2} / \mathrm{r}+\mathrm{F} / \mathrm{m} \operatorname{Cos}(\gamma-\theta) \\
\dot{\mathrm{V}} & =-\mathrm{UV} / \mathrm{r}+\mathrm{F} / \mathrm{m} \operatorname{Sin}(\gamma-\theta) \\
\dot{\phi} & =\omega \\
\dot{\omega} & =\mathrm{F} / \mathrm{I} \mathrm{r} \operatorname{Sin}(\gamma-\theta) \mathrm{DEG} \\
\dot{\mathrm{~s}} & =-\mathrm{V} / \mathrm{r} \cdot \mathrm{DEG}-\omega \\
\dot{\mathrm{t}} & =1 \\
\dot{\mathrm{PF}} & =\left(\mathrm{r}-\mathrm{r}_{\text {limit }}\right)^{2}
\end{aligned}
$$

Now generalizing to the STOP formulation, the state variables are:

$$
\begin{array}{lll}
\mathrm{X}(\mathrm{~K} 1)=r & (\mathrm{ft}) \\
\mathrm{X}(\mathrm{~K} 2)=\theta & (\mathrm{deg}) \\
\mathrm{X}(\mathrm{~K} 3)=\mathrm{U} & (\mathrm{fps}) \\
\mathrm{X}(\mathrm{~K} 4)=\mathrm{V} & (\mathrm{fps}) \\
\mathrm{X}(\mathrm{~K} 5)=\phi & (\mathrm{deg}) \\
\mathrm{X}(\mathrm{~K} 6)=\omega & (\mathrm{deg} / \mathrm{sec}) \\
\mathrm{X}(\mathrm{~K} 7)=\delta & (\mathrm{deg}) \\
\mathrm{X}(\mathrm{~K} 8)=\mathrm{t} & (\mathrm{sec}) \\
\mathrm{X}(\mathrm{~K} 21)=\mathrm{PF} & \left(\mathrm{ft}^{2} / \mathrm{sec}^{2}\right)
\end{array}
$$

The control variable is:

$$
\mathrm{U}(\mathrm{I} 1) \quad=\gamma \quad \text { (deg) }
$$

The initial conditions are:

$$
\begin{aligned}
& X_{0}(K 1)=10 \\
& X_{\circ}(K 2)=0 \\
& X_{\circ}(K 3)=0 \\
& X_{\circ}(K 4)=0 \\
& X_{\circ}(K 5)=0 \\
& X_{\circ}(K 6)=0 \\
& X_{\circ}(K 7)=0 \\
& X_{\circ}(K 21)=0
\end{aligned}
$$

The problem statement is:

$$
\begin{aligned}
\Omega & =\mathrm{X}(\mathrm{~K} 7)=0 \\
\phi & =\mathrm{t} \quad \text { stopping quantity } \\
\psi_{1} & =\mathrm{r}=10 \\
\psi_{2} & =\mathrm{R} P \mathrm{PF}=0
\end{aligned}
$$

The partials required are:

$$
\begin{aligned}
& \partial \dot{\mathrm{r}} / \partial \mathrm{u}=1 \\
& \partial \theta / \partial \mathrm{r}=-\mathrm{V} / \mathrm{r}^{2} \mathrm{DEG} \\
& \partial \theta / \partial \mathrm{V}=1 / \mathrm{r} \mathrm{DEG} \\
& \partial \dot{\mathrm{U}} / \partial \mathrm{r}=-\mathrm{V}^{2} / \mathrm{r}^{2} \\
& \partial \dot{\mathrm{U}} / \partial \mathrm{V}=2 \mathrm{~V} / \mathrm{r} \\
& \partial \dot{\mathrm{U}} / \partial \theta=\mathrm{F} / \mathrm{m} \operatorname{Sin}(\gamma-\theta) \mathrm{RAD} \\
& \partial \dot{\mathrm{U}} / \partial \theta=-\mathrm{F} / \mathrm{m} \operatorname{Sin}(\gamma-\theta) \mathrm{RAD} \\
& \partial \dot{\mathrm{~V}} / \partial \mathrm{r}=+\mathrm{UV} / \mathrm{r}^{2} \\
& \partial \dot{\mathrm{~V}} / \partial \mathrm{U}=-\mathrm{V} / \mathrm{r} \\
& \partial \dot{\mathrm{~V}} / \partial \mathrm{V}=-\mathrm{U} / \mathrm{r} \\
& \partial \dot{\mathrm{~V}} / \partial \theta=-\mathrm{F} / \mathrm{m} \operatorname{Cos}(\gamma-\theta) \mathrm{RAD} \\
& \partial \dot{\mathrm{~V}} / \partial \gamma=\mathrm{F} / \mathrm{m} \operatorname{Cos}(\gamma-\theta) \mathrm{RAD} \\
& \partial \dot{\phi} / \partial \omega=1 . \\
& \partial \dot{\omega} / \partial \mathrm{r}=+\mathrm{F} / \mathrm{I} \operatorname{Sin}(\gamma-\theta) \mathrm{DEG}
\end{aligned}
$$

$$
\begin{aligned}
& \partial \dot{\omega} / \partial \theta=-F / I r \operatorname{Cos}(\gamma-\theta) \\
& \partial \dot{\omega} / \partial \gamma=+F / I r \operatorname{Cos}(\gamma-\theta) \\
& \partial \dot{\delta} / \partial r=-\partial \dot{\theta} / \partial \mathrm{r} \\
& \partial \dot{\delta} / \partial \mathrm{V}=-\partial \dot{\theta} / \partial \mathrm{V} \\
& \partial \dot{\delta} / \partial \omega=-1 . \\
& \partial \dot{P F} / \partial \mathrm{r}=2\left(\mathrm{r}-\mathrm{r}_{\text {limit }}\right)
\end{aligned}
$$

The subroutines requiring changes are FPROG, ANPRTL, and ANPARP. In addition, a dummy subroutine AKSTP may be used and part of STP1 may be deleted to save computer time.

As a matter of interest, the solution to the above problem is shown in figure 23. The problem solution required approximately 4 hours of engineering time and 10 minutes of computer time.

Program and data overlay. - Due to the overall size of STOP, it is not possible to fit all the subroutines and data into the IBM 7094 available core as is discussed in "Operating Information."

It was necessary to minimize core requirements while maintaining the program's capability, flexibility, and execution speed in that order of importance. To this end, program overlay, data overlay, and equivalence are used.

Program overlay: The STOP program can be broken into five major functional groups of subroutines: data initialization, forward integration, backward integration, convergence control, and plotting control. Each of these groups could operate separately if a main program could control their execution and interlinking data.

Using the IBSYS overlay feature, the program was divided into the above mentioned groups or links and three additional links. Two of these additional links were added to minimize the storage required for the forward integration subroutines, and the last link controls the final output for a data case. These nine links are described below.

LINK 0 - Controls the program flow or execution from link to link and remains in core all the time.

LINK 1 - Forward integration link
LINK 2 - Numerical partial check link
LINK 3 - Nominal guidance link
LINK 4 - Convergence control link

Links 1, 2, \& 3
comprise the
forward integration

Figure 23. PATH OF CAT ON DISC

LINK. 5 - Backward integration link
LINK 6 - Initialization link
LINK 7 - Final output link
LINK 8 - Plotting link

Under the IBSYS overlay feature, unless otherwise specified, all links will be loaded onto the I/O unit assigned as SYSUT2. In an effort to speed up the loading of links, the two most frequently used links (forward integration and convergence control) are loaded on separate I/O units by themselves, and these I/O units are rewound after each loading.

See "Operating Information" for a breakdown of links by subroutine. Figure 17 illustrates the program overlay and gives approximate core requirements for each link.

Data overlay: Since all of the input data for large cases will not fit in core, some of the data is written on scratch tapes and overlayed during execution.

Control table overlay: The input control variable table is normally stored in the TIMEU array, dimensioned to hold 1000 data points. If the input table exceeds 1000 points, that part of the table which won't fit in TIMEU is written in binary format on the I/O unit referenced as KTAN. After each forward integration step, the EXEC subroutine tests the current time against the highest time currently stored in the TIMEU array to see if more data should be read from KTAN into TIMEU.

A similar procedure is used in subroutine UCALC, where the updated control table is calculated. In this subroutine, the I/O unit referenced as KPAR is used for temporary storage as the updated control table is built. Again, a maximum of 1000 words of the control table are stored in TIMEU, and the remainder written on KTAN.

If the total number of data points in the updated control table exceeds 13,590 , the data case is aborted and a comment printed.

Nonstage and stage-dependent data overlay: Except for the control and restart tables, all other tables, both nonstage and stage dependent, are initially read into the Z array, dimensioned 7000 .

The nonstage dependent data is read first and written in binary format on the I/O unit referenced as KDAT. The stage-dependent data is then read, one stage at a time and written on KDAT. If the sum of the nonstage-dependent and stagedepenclent data for any stage exeeds 7000 points, a message is printed and the clata case aborted.

During the forward integration, the Z array contains the nonstage-dependent and stage-dependent data for the current stage. At the beginning of each new stage, the data for that stage is read from KDAT into Z, replacing or overlaying the data for the preceding stage. After the last stage has been integrated, for each valid forward trajectory, the end points of that trajectory are written on KDAT. These end points at the end of a data case are read from KDAT and printed as the trajectory summary.

At the start of each forward trajectory, trial or valid, KDAT is rewound. The nonstage-dependent tables are read and the stage-dependent tables for the current stage are read back into the Z array. Reading the nonstage-dependent tables into the Z array at the start of each iteration is necessary to allow other links to use the Z array for storage while they are executing.

Equivalence. - The equivalence feature is used liberally throughout the program to make maximum use of available core in each link. Another purpose of the equivalence is to allow use of parts of the NC array (or its equivalent) for subscripting. The two major arrays to which other variables are equivalenced are NC and Z .
Z array equivalencing: Figure 24 a illustrates the manner in which the Z array is used. The first column, represented by the shaded area, presents the usage of the Z array during forward integration. Following the weighting table, which is always in the Z array and never equivalenced, the nonstage-dependent data is stored starting at $\mathrm{Z}(201)$. Then the stage-dependent data for any one stage is stored. Both the nonstage-dependent data and the stage-dependent data are destroyed by equivalence during the backward integration and then reloaded into the Z array from KDAT in subroutine EXEC.

The Z array, from $\mathrm{Z}(201)$ through $\mathrm{Z}(2872)$, is used during the backward integration (link 5) for temporary storage of the state variable values, derivatives, integration errors, and other valucs needod by RKVS (Runge-Kutta variable step) integration package.

The Z array from $Z(2900)$ through $Z(7000)$ and the TIMEU array, (1-1000), are used during the backward integration for storage of the partial derivatives read from KPAR.

NC array equivalencing: The NC array is equivalenced in subroutines throughout the program to make use of subscripted subscripts; i.e. use the NC as a subscript. Figure 24b shows the manner of NC equivalencing. From the figure it can be seen that the control variable indicators, NC (77) to NC (80), are equivalenced with the control variable indices $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$, and I 4 . The state variable and placard indicators, NC(121) through NC(160), are equivalenced with state and placard variable indices K1 through K40.

Trouble Shooting.- The purpose of this section is to provide a quick reference to aid in correcting typical problems encountered during the operation of

Figure 24a.
Z ARRAY EQUIVALENCING

Figure 24b.
NC ARRAY EQUIVALENCING

STOP. The most common problems, as with any large, flexible computer program, are input errors. Another common problem is slow convergence and/or excessive run time. Also, STOP may abort during a run, either because of a problem it has detected or an error detected by the computing system.

It is always possible to restart STOP from the last valid iteration, whether termination was a successful exit, a STOP abort, a system_abort, or a system failure. Problems that execute more than one hour have a reasonable probability of experiencing a system failure, which makes restart capability a necessary requirement.

An input checklist and a trouble-shooting guide are provided below to assist the user in obtaining satisfactory results from STOP.

Input checklist: The following checklist will aid in data deck preparation. It includes the most common input errors encountered by users not familiar with STOP. The checklist assumes that all keypunch errors have been removed and that all data are placed correctly in their fields. In particular, check all integer data to make sure it is right adjusted. The checklist is in the same order as the input instruction guide.

Card set 1 (title card)
No problem
Card set 2 (controls)
Check MSTAGE. Remember that if a tilt maneuver is used, it counts as a stage.
Card set 3 (NC controls)

1. Check last card for blank field in columns 61-65. If last card is full, add a blank card.
2. Check NC (4). It should equal the number of enroute and terminal constraints plus payoff and stopping variables.
3. Check NC (16) and NC (17). NC (16) must be 1 if the input control table was punched by STOP. NC (17) must be 1 if the restart table is included.
4. Check NC (18) through NC (32). Only state variables selected for integration may be used as the stopping condition. Three basic requirements must be examined to be sure that the stopping condition is attainable. First, XSTP must be reached before the stopping time (TSTP) of the final stage. Second, the stopping condition must be compatible with the constraints selected (e.g. do not select altitude if the constraint on flight path angle is zero degrees). Finally, select a stopping condition that will always be monotonic in the last stage of flight and has a large terminal time derivative. Note that the stopping condition is only examined during the final stage.

Performance and constraint functions must be state variables selected for integration. Be sure that the sign of the performance variable index is plus for maximizing and minus for minimizing.

Constraint-dependent parameters and constraint tables must be input in the same order as they are in NC (20) to NC (32).
5. Check NC (121) - NC (160). Do not select state variables that are not needed, such as path range or the losses. Do not use latitude and heading for non-rotating-earth problems. Instead, formulate the problem in terms of equatorial flight. Also, do not select placards unless they are - or are in danger of - being violated. Note that run time is almost directly proportional to the number of selected state variables.

Card set 4 (initial condition data)

1. Check DUSQ if a restart table is not included. Values on the order of 100 are reasonable for airplane-type problems. For other vehicles, use an initial value of about one tenth of the controllable trajectory time.
2. Check FINNER and BINNER. Values of 18 are typical. The run time may be decreased by using 15 's, but convergence may be slower. For rocket problems, values of 18 seem to work well, while for SST problems 15's are better. In general, difficult problems require settings that will result in at least 500 integration steps.
3. Check XO ()'s to verify they are in the same order as the state variables selected. Also, if more than seven state variables are selected, there must be two or three cards of XO ()'s. The XO's are a packed array of initial state variable values. Note, for example, that XO (7) does not necessarily equal $\mathrm{X}(\mathrm{K} 7$) at the starting time.

Card set 5 (stage dependent parameters)

1. Check to be sure eight cards are present if MSTAGE is less than eight, otherwise 16 cards.
2. Check TSTP. The last stage requires a stopping time that will not be reached under usual conditions. It should be set to allow an abort if the stopping condition is not met. For VTO systems the first stage contains the tilt maneuver; TSTP for this stage represents the termination of the tilt maneuver.
3. Check DTMIN. Too large a value will slow convergence. SST problems behave badly if DTMIN is much larger than 0.1 second.
4. Check K_{T} and K_{M}. The first run should be a nominal only so that weight, thrust, and other data may be checked. K_{M} and K_{T} may be used to adjust errors in total propellant consumption and total impulse.

Cardset 6 (constraint dependent parameters)

1. Check to be sure that one card is present for each enroute and terminal constraint and that they are in the same order as the constraints selected by the NC's.
2. Check the DPSI values. Very small values may result in slow convergence. Values of about 0.1 on angles and 100 on altitude are reasonable.

Card set 7 (free initial conditions)

1. Check to be sure there are NC (5) cards.
2. If a tilt maneuver is selected, $\boldsymbol{\Delta} \gamma_{\circ}$ will be applied at end of tilt (start of stage 2). A large maximum value is required.
3. To restart with variable initial conditions:
a. If weight is a variable initial condition, all positive-stage weights must be updated to be compatible with the weights from the valid step from which restart is desired. (card set 5, card subset 1). Zero and negative values are not updated.
b. If a variable initial condition is selected on gamma and a tilt maneuver is selected, table 2 must be updated with the value of gamma at the beginning of stage 2 from the valid step from which restart is desired.
c. All other state variables chosen as variable initial conditions are updated in card set 4, card 3. These values are also updated from the valid step from which restart is desired.

Card set 8 (nominal guidance data)

1. Check to be sure NC (13) cards are present.
2. Check the sign of NSW (see instructions).

Card set 9 (tables)

1. Check table 0 if constructed by the user. This table will not be extrapolated and, therefore, a sufficiently large time must be included as the last point. Multiple time points may be used at staging time. This table must always be present regardless of whether or not a nominal guidance is used.
2. Check the numbers of the placard tables (see notes at the end of the input instructions).
3. All tables after table 0 may be extrapolated (linearly) in any direction.
4. System abort during data input
a) Table card count in error
b) Deck or data setup error
c) Error in count of state variables, terminal constraints, free initial conditions, or guidance modes
d) STG or END card missing or misplaced
e) NC input error
f) Restart error
5. Trajectory fails to meet stopping condition or prints note, MAXIMUM STOPPING TIME EXCEEDED
6. STOP abort with note, MAXIMUM ALLOWABLE TABLE STORAGE EXCEEDED
a) Stopping conditions not attainable on last stage
b) TSTP of last stage too small
a) Check card count in each table
b) See appropriate sections of input instructions
c) Make sure card set 4 contains at least four cards if more than seven state variables were selected ($\mathrm{NC}(121)$ - NC(160)). Make sure card set 5 contains 16 cards if MSTAGE is greater than seven. Make sure card set 6 contains one card for each selected constraint (terminal and enroute) (NC(4) - 2 cards required). Card set 7 must contain NC(5) cards and card set 8 must have NC(13) cards.
d) Check data deck
e) Check card set 3. Make sure last card has a blank field in columns 61-65.
f) Restart table required if $\operatorname{NC}(17)=1$. See output description.
a) Correct table 0 or use closed-loop options. See suggestions for $\mathrm{NC}(18)$ in checklist.
b) Increase TSTP of last stage. Trajectory will always abort if this time is reached.

Reduce the amount of data or divide the stage-dependent tables into more stages
4. STOP abort with note, NUMBER OF POINTS
STORED IN BACK-
WARD INTEGRATION EXCEEDS
MAXIMUM
ALLOWABLE
5. One or more
constraints not met after 20 iterations
6. Excessive run time (Note: Run time is very problem dependent. Simple problems may run several iterations per minute, while very difficult problems may require 1 hour per iteration)
a) Backward integration too tight
b) Storage too frequent
a) Constraints not attainable
b) Solution nominal dependent
c) Partial derivatives in error
d) Input weighting matrix problem
e) Placard too nonlinear
f) Placard corners or discontinuities
a) Unnecessary state variables being integrated
b) Unnecessary constraints selected.

$$
u_{0}
$$

a) Lower BINNER by 3
b) Increase ISTOR2 by 1 (Recommended solution)
a) Change problem statement
b) Start from different nominal
c) Check partial derivatives (NC(12) option)
d) Increase weighting of applicable control variable
e) Nonlinearities are often caused by spikes in the placard table. Try redesigning placard so that the placard has a more severe violation in the spike region.
f) Avoid corners or discontinuities in placard tables.
a) During the iterative procedure, integrate only the minimum number of equations (e. g. if the problem can be phrased in terms of flight around the equator, and bank control is not required, latitude and heading equations are not required). Run time is nearly proportional to the number of state variables.
b) Constrain only the state variables required.
7. Excessive endpoint oscillations
8. Slow convergence

Variable initial conditions
allow too large a variation per iteration
a) Weighting matrix problems
b) Integration too loose
c) Error in partials
d) Poor stopping condition
e) Constraint tolerances too tight
f) EPSLN too large
a) Try decreasing the input weighting matrix elements on all control variables during the initial part of the trajectory. Also, decrease weighting on control variables that tend to be nonlinear (such as sweep)
Decrease initial increment per iteration (card set 7) for the free initial conditions.
b) Decrease DTMIN and increase BINNER and FINNER. The integration should never reach minimum step size.
c) Check partials ($\mathrm{NC}(12$) option)
d) Select a stopping variable that is monotonic and has a large time derivative at XSTP. Problems that stop on time usually behave better.
e) Increase DPSI's (card set 6)
f) EPSLN (card set 4) must be small enough so that end-point motion within the EPSLN band is small compared with the end-point motion predicted by the steepest ascent logic.

See remedy for symptom 8.
9. STOP abort with note, CONVERGENCE FAILED

All constraints have moved less than their respective final tolerance bands and the change in performance is less than or equal to 10^{-6} times the value of performance on the previous valid step.
10. STOP termination with note, THE LAST TRAJECTORY APPEARS TO BE AN EXTREMAL
11. STOP abort with note, GRADIENT OF PHI TOO NEGATIVE TO CONTINUE
12. STOP abort with note, OVERFLOW OCCURRED IN MATRIX INVERSION - ABORT
13. STOP abort with note, SINGULAR MATRIX - ABORT

All constraints are inside their respective final tolerance bands, the change in performance is less than or equal to 10^{-6} times the value of performance on the previous valid step, and the denominator of the first Lagrange multiplier is less than or equal to one ten thousandth of ${ }_{\boldsymbol{\phi}}^{\boldsymbol{\phi} \boldsymbol{\phi}}$.

The denominator of the first Lagrange multiplier plus 10 percent of ${ }^{1} \phi \boldsymbol{\phi}$ is negative.

Overflow in inversion of $\mathrm{I} \psi \psi$ matrix.

Singular $I_{\psi \psi} \quad$ matrix.

Congratulations

See remedy for symptom 8.

Check problem statement and table 1.

Check problem statement and table 1.

SYMPTOM
DIAGNOSIS
REMEDY
14. STOP abort with note, NUMBER OF TRIES PLUS REJECTED VALID STEPS FOR CURRENT ITERATION EXCEEDS 10 ABORT

An excessive number of rejected valid steps in combination with an excessive number of trials have been run in an attempt to run an accepted valid step.

See remedy for symptom 8.

Plotting Information

The program will plot any state, auxiliary printout, or control variable versus time or any other state, auxiliary printout, or control variable. Each curve represents a particular iteration. Plotting is performed on either the Orthomat drafting machine or the Stromberg-Carlson (SC) 4020 microfilm recorder. Orthomat plots can be made on one of two pregridded forms: 11-by 17-inch mm vellum, or $8-1 / 2$ - by 11 -inch mm vellum. SC 4020 plots may be made on 9 - by 9 -inch vellum (hard copy) or $16-\mathrm{mm}$ microfilm.

Limitations. - The following are plotting limitations:

1) 7 plots maximum ;
2) 6 curves per plot maximum
3) Multiple-data cases cannot be plotted;
4) X and Y axes annotation occurs every 2 cm .;
5) Plot titling consists of the following

LINE 1 - centered, 0.2 inch below the X axis
DEP. VAR. NAME VS INDEP. VAR. NAME
LINE 2 - centered, 0.2 inch below LINE 1
The first 72 characters taken from the title card on the data deck.
Input controls required for plotting. - The following values should be examined in the input when plotting is desired:

NC(1) ORTHOMAT
$=0$, output will be on 11 - by 17 -inch pregridded mm vellum
$=1$, output will be on $8-1 / 2-$ by 11 -inch pregridded mm vellum
SC 4020
$=0$, output will be 9 - by 9 -inch vellum (hard copy)
$=1$, output will be 16 mm microfilm
$=2$, output will be 9 - by 9 -inch vellum (hard copy)
$=3$, output will be both hard copy and microfilm
$\mathrm{NC}(3)$ ORTHOMAT
$=0$, multiple curves will be defined with plot symbols (see multiple curve identification)
$=1$, multiple curves will be drawn with new colors (see multiple curve identification).

SC 4020
Not Used
NC(11) ORTHOMAT \& SC 4020
$=0$, No plots wanted
$=+\mathrm{N}, \mathrm{SC} 4020$ plots wanted
$=-\mathrm{N}$, Orthomat plots wanted
Note: The nominal, or first trajectory, the last trajectory, and every |N| valid trajectories will be plotted, until NITC is reached or six trajectories plotted. Example: NITC $=10, \mathrm{NC}(11)=-2$. The Orthomat will plot the nominal and iterations $2,4,6,8$, and 10 .

Each plot to be made is defined by a pair of integers that are input in the NC array, starting with $\mathrm{NC}(61)$.

Figure 11 gives the plot index for all variables.
NC(61) Dependent variable for plot 1
NC(62) Independent variable for plot 1
NC(63) Dependent variable for plot 2
NC(64) Independent variable for plot 2

NC(73) Dependent variable for plot 7
$\mathrm{NC}(74)$ Independent variable for plot 7
Note: A comment card must be included with the control cards stating that unit C1 will contain plot output.

Multiple-curve identification. -When plotting on the Orthomat, multiple curves can be identified by either plot symbols or colored ink. (Note: Colors other than black or red do not reproduce very well).

SC 4020 multiple curves are always identified with plot symbols:

Curve No.	Plot Symbol	Ink Color
1	None	Black
2	\odot	Blue
3	0	Green
4	\bigcirc	Purple
5	\triangle	Red
6	0	Black

REFERENCES

1. NASA Request for Proposal L-5347 - A Research Study for Supersonic Transport Trajectory Optimization. NASA, Langley Research Center.
2. Bryson, A. E.; and Denham, W. F.: A Steepcst-Ascent Method for Solving Optimum Programming Problems. J. Appl. Mech., June 1962.
3. Hague, D. S.: Three-Degree-of-Freedom Problem, Optimization Formulation. Wright Field FDL-TDR-64-1 Part I, Volume 3, October 1964.
4. Leitmann, G.: Optimization Techniques. Academic Press, New York, N.Y., 1962.
5. Bryson, A. E.; Denham, W. F.; and Dreyfus, S. E.: Optimal Programming, Problem with Inequality Constraints I: Necessary Conditions for Extremal Solutions. AIAA Journal, November 1963.
6. Denham, W. F.; and Bryson, A. E.: Optimal Programming Problems with Inequality Constraints II: Solution by Steepest-Ascent. AIAA Journal, January 1964.
7. Phase II-A Comprehensive Report - Sonic Boom and Noise. Boeing Report D6-8686-7, November 1964.
8. Anderson, S. L.: Runge-Kutta Methods of Numerical Integration for Flight Simulation Programs. Boeing Report D2-139527-1, September 1966.
9. Finke, G. F.: Standard Atmospheric Properties (1962). Boeing Applied Mathematics Report AS 1772.

APPENDIX A

CONTROL VARIABLE CHOICE FOR POINT MASS EQUATIONS OF MOTION

The point mass equations of motion used for optimization of trajectories using angle of attack as a control variable are unstable for some types of vehicles with low thrust/weight, high lift/weight airbreathing engines. For rockettype vehicles or high thrust/weight airbreathing vehicles, stability problems are generally not encountered. Problems arise when flying open loop with an angle-of-attack history defined. Analysis of the linearized point mass equations of motion with angle of attack as the control variable is given herein showing that a lightly damped oscillatory motion results. The use of pitch angle as the control variable is anlyzed; it•is shown that the equations of motion are stable and that no oscillation occurs.

The linearized point mass equations of motion, assuming constant weight and flat earth, are:

$$
\begin{aligned}
& \dot{\bar{v}}-\frac{\left(T_{\bar{v}}-D_{\bar{v}}\right) \bar{v}}{m V_{O}}-\frac{\left(T_{\bar{h}}-D_{\bar{h}}\right) \hbar}{m V_{O}}+\frac{g}{V_{o}} \quad \gamma=-\frac{D_{\alpha}}{m V_{o}} \alpha \\
& \begin{aligned}
\gamma-\frac{\left(L_{\bar{v}}-L_{o}+W\right)}{m V_{o}} & \overline{L_{\bar{h}}} \\
m_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} & = \\
\dot{\bar{h}}-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~h}_{\mathrm{o}}} \gamma & =0
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
\gamma & =\text { perturbed flight path angle } \\
\mathrm{v} & =\text { perturbed velocity } \\
\mathrm{h} & =\text { perturbed altitude } \\
\overline{\mathrm{v}} & =\mathrm{v} / \mathrm{V}_{\mathrm{o}} \\
\mathrm{~h} & =\mathrm{h} / \mathrm{h}_{\mathrm{O}} \\
\mathrm{~T}_{\overline{\mathrm{V}}} & =\mathrm{V}_{\mathrm{O}} \partial \mathrm{~T} / \partial \mathrm{V} \\
\mathrm{D} \overline{\mathrm{~V}} & =\mathrm{V}_{\mathrm{o}} \partial \mathrm{D} / \partial \mathrm{V} \\
\mathrm{~T}_{\mathrm{h}} & =\mathrm{h}_{\mathrm{O}}^{\mathrm{O}} \partial \mathrm{~T} / \partial \mathrm{h} \\
\mathrm{D}_{\mathrm{h}} & =\mathrm{h}_{\mathrm{o}} \partial \mathrm{D} / \partial \mathrm{h} \\
\mathrm{D}_{\alpha} & =\partial \mathrm{D} / \partial \alpha \\
\mathrm{L}_{\mathrm{h}} & =\mathrm{h}_{\mathrm{O}} \partial \mathrm{~L} / \partial \mathrm{h} \\
\mathrm{~L}_{\overline{\mathrm{V}}} & =\mathrm{V}_{\mathrm{O}} \partial \mathrm{~L} / \partial \mathrm{V} \\
\mathrm{~L}_{\alpha} & =\partial \mathrm{L} / \partial \alpha
\end{aligned}
$$

All of the state variables listed are perturbation values and (). are evaluated at the initial condition. At the initial time the conditions are assumed to be

$$
\begin{align*}
& \dot{\bar{V}}_{o}=\frac{T_{o}-D_{o}}{m}-g \gamma_{o} \\
& \dot{\gamma}_{o}=\frac{T_{o} \alpha_{o}+L_{o}}{m V_{o}}-\frac{W}{m V_{o}}=0 \tag{A2}\\
& \dot{\bar{h}}_{o}=\frac{V_{o}}{h_{o}} \gamma_{o}
\end{align*}
$$

Taking the Laplace transform of equations A1 and placing in matrix form gives:

$$
\left[\begin{array}{ccc}
S-\frac{T_{\bar{v}}-D_{\bar{V}}}{m V_{o}} & \frac{g}{V_{o}} & -\frac{T_{\bar{h}}-D_{\bar{h}}}{m V_{o}} \tag{A3}\\
-\frac{L_{\bar{v}}+W-L_{o}}{m V_{o}} & S & -\frac{L \bar{h}}{m V_{o}} \\
0 & -\frac{V_{o}}{h_{o}} & S
\end{array}\right]\left\{\begin{array}{c}
\bar{v} \\
\bar{\gamma} \\
\bar{h}
\end{array}\right\}=\bar{\alpha}\left\{\begin{array}{c}
\frac{D_{\alpha}}{m V_{o}} \\
\frac{T_{o}+L_{\alpha}}{m V_{o}} \\
0
\end{array}\right\}
$$

The characteristic equation of the system of equations is obtained by equating the determinant of the three by three matrix to zero giving:

$$
\begin{align*}
& S^{3}-S^{2}\left(\frac{T_{-}-D_{\bar{v}}}{m V_{o}}\right)-S\left[\frac{V_{o}}{h_{o}} \frac{L_{\bar{h}}}{m V_{o}}-\frac{g}{V_{o}}\left(\frac{T_{-}+W-L_{o}}{m V_{o}}\right)\right] \\
& -\frac{V_{o}}{h_{o}}\left(\frac{T_{\bar{h}}-D_{\bar{h}}}{m V_{o}}\right)\left(\frac{L_{-}+W-L_{o}}{m V_{o}}\right)+\frac{V_{o}}{h_{o}} \frac{L_{\bar{h}}}{m V_{o}}\left(\frac{T-D_{\bar{v}}-}{m V_{o}}\right)=0 \tag{A4}
\end{align*}
$$

The characteristic equation evaluated for a typical SST in a cruise condition, assuming $\gamma_{o}=0, \dot{\bar{V}}_{\mathrm{o}}=0, \mathrm{~h}_{\mathrm{o}}=50,000$ feet, and $\mathrm{V}_{\mathrm{o}}=3322 \mathrm{fps}$

$$
\begin{aligned}
\mathrm{T}_{\mathrm{o}} & =\mathrm{D}_{\mathrm{o}}=96,300 \mathrm{lb} \\
\mathrm{~W} & =346,000 \mathrm{lb} \\
\mathrm{~L}_{\mathrm{o}} & =344,000 \mathrm{lb} \\
\alpha_{\mathrm{o}} & =0.0144 \text { radians } \\
\mathrm{L}_{\alpha} & =2.39 \times 10^{7} \mathrm{lb} / \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{L}}{\partial \mathrm{~h}}=\frac{\mathrm{L}_{\mathrm{O}}}{\rho} \frac{\partial \rho}{\partial \mathrm{~h}}=-18.98 \mathrm{lb} / \mathrm{ft} \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{~V}}=2 \frac{\mathrm{~L}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}=207 \mathrm{lb}-\mathrm{sec} / \mathrm{ft} \\
& \frac{\partial \mathrm{D}}{\partial \mathrm{~h}}=\frac{\mathrm{D}_{\mathrm{O}}}{\rho} \frac{\partial \rho}{\partial \mathrm{~h}}=-5.32 \mathrm{lb} / \mathrm{ft} \\
& \frac{\partial \mathrm{D}}{\partial \mathrm{~V}}=2 \frac{\mathrm{D}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{O}}}=57.9 \mathrm{lb}-\mathrm{sec} / \mathrm{ft} \\
& \frac{\partial \mathrm{~T}}{\partial \mathrm{~h}}=-3.18 \mathrm{lb} / \mathrm{ft} \\
& \frac{\partial \mathrm{~T}}{\partial \mathrm{u}}=5.3 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}
\end{aligned}
$$

gives

$$
\mathrm{S}^{3}+4.89 \times 10^{-3} \mathrm{~S}^{2}+1.96 \times 10^{-3} \mathrm{~S}+4.79 \times 10^{-6}=0
$$

which has the roots

$$
\begin{aligned}
& S=-2.44 \times 10^{-3} \\
& S=-1.22 \times 10^{-3} \pm \mathrm{j} 4.43 \times 10^{-2}
\end{aligned}
$$

These indicate that all roots are stable, but the damping ratio of the oscillatory pair, 0.028 , indicates that they represent near neutral stability. The period is 141.6 seconds. Figure A1 shows the results of a digital computer run for similar conditions using the complete nonlinear point mass equation angle-of-attack constant and perturbing the initial value of the flight path angle. The motion is slightly divergent with a period of about 148 seconds. The nonlinearity of the point mass simulation could account for the slight differences as compared to the linear approximation.

The dominant term in the natural frequency for the oscillating mode is $\delta \mathrm{L} / \partial \mathrm{h}$, or more specifically, the $\delta \rho / 8 \mathrm{~h}$ (atmospheric density gradient). This term is large for winged vehicles. The important terms in damping are: (1) $8 \mathrm{~T} / \partial \mathrm{v}$, strictly an airbreather term which is destabilizing; and (2) $\partial \mathrm{D} / \partial \mathrm{v}$, a stabilizing term - but the desire is to have vehicles with low drag, which makes this term relatively small. For accelerating vehicles, a high thrust/weight helps keep damping large, as can be seen by writing

$$
\begin{aligned}
& \frac{\partial \mathrm{D}}{\partial \mathrm{~V}}=2 \frac{\mathrm{D}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{o}}}=2 \frac{\mathrm{~T}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{o}}}\left(1-\frac{\overline{\mathrm{V}}_{\mathrm{o}} / \mathrm{g}}{\mathrm{~T}_{\mathrm{o}} / \mathrm{W}}\right)
\end{aligned}
$$

A low thrust/weight reduces the damping of the system.

Figure Al SUPERSONIC CRUISE WITH θ AND a CONTROL

Introducing θ as the control variable, equations A3 become (upon letting $\bar{\alpha}=\bar{\theta}-\bar{\gamma})$

$$
\left[\begin{array}{ccc}
S-\frac{T_{\bar{v}}-D_{\bar{v}}}{m V_{o}} & \frac{g}{V_{o}}+\frac{D_{\alpha}}{m V_{o}} & -\frac{T_{\bar{h}}-D_{\bar{h}}}{m V_{o}} \tag{A5}\\
-\frac{L_{\bar{v}}+W-L_{o}}{m V_{o}} & S+\frac{T_{o}+L_{o}}{m V_{o}} & -\frac{L_{\bar{h}}}{m V_{o}} \\
0 & -\frac{V_{o}}{h_{o}} & S
\end{array}\right\}\left\{\begin{array}{c}
\bar{v} \\
\bar{h}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{D_{\alpha}}{m V_{o}} \\
\frac{T_{o}+L_{\alpha}}{m V_{o}} \\
0
\end{array}\right\}
$$

which has the characteristic equation

$$
\begin{align*}
S^{3} & +S^{2}-\left[\frac{T_{V}^{-}-D_{V}}{m V_{o}}+\frac{T_{o}+L_{\alpha}}{m V_{o}}\right]+S\left[-\frac{T_{v}-D_{\bar{v}}^{-}}{m V_{o}}\left(\frac{T_{o}+L_{\alpha}}{m V_{o}}\right)\right. \\
& \left.-\frac{V_{o}}{h_{o}} \frac{L_{h}}{m V_{o}}+\frac{L_{\bar{v}}+W-L_{o}}{m V_{o}}\left(\frac{g}{V_{o}}+\frac{D}{m V_{o}}\right)\right] \\
& +\left[\frac{T_{V}-D_{V}}{m V_{o}}+\frac{V_{o}}{h_{o}} \frac{L_{h}}{m V_{o}}-\frac{L_{V}+W-L_{o}}{m V_{o}}\left(\frac{V_{o}}{h_{o}} \frac{T_{h}-D_{h}}{m V_{o}}\right)\right]=0 \tag{A6}
\end{align*}
$$

When evaluated for the same flight condition as for the α controller, it is

$$
\begin{equation*}
\mathrm{S}^{3}+0.45 \mathrm{~S}^{2}+4.0 \times 10^{-3} \mathrm{~S}+4.79 \times 10^{-6}=0 \tag{A7}
\end{equation*}
$$

where the roots are approximately

$$
\begin{aligned}
& \mathrm{S}=1.2 \times 10^{-3} \\
& \mathrm{~S}=-0.45 \\
& \mathrm{~S}=-7.65 \times 10^{-3}
\end{aligned}
$$

Thus each root is real and negative. Figure A1 shows the effect of the θ type control (i.e., θ held constant and the flight path angle perturbed). The motion is overdamped and no oscillation occurs. The damping due to the flight path angle ($\mathrm{T}_{\mathrm{o}}+\mathrm{L}_{\alpha} / \mathrm{m} \mathrm{V}_{\mathrm{o}}$) dominates the dynamics and eliminates the unrealistic oscillation from the cruise flight path.

The use of the θ controller essentially introduces a fourth degree of freedom with the assumptions of neutral stability, no short-period dynamics, and a position feedback autopilot.

APPENDIX B

PROGRAM EQUATIONS, VARIABLES, AND CONSTANTS DEFINED

The purpose of this appendix is to define the names placed in COMMON which describe basic and frequently used equations, variables, and constants.

Equations of Motion

The equations of motion defining the state variables, auxiliary state variables, and placards are defined as $F($). The argument of the functions identify the state variables as given in figure 1.

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~K} 1)=\mathrm{dW} / \mathrm{dt}=-\mathrm{WDOT} \\
& F(\mathrm{~K} 2)=\mathrm{dH} / \mathrm{dt}=\mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} \\
& F(K 3)=d \gamma_{R} / d t=\left\{\left[(T \sin \alpha+L) \cos \varphi G_{o} / W-G \cos \gamma_{R}\right.\right. \\
& \left.+\omega^{2} \mathrm{R} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right] / \mathrm{V}_{\mathrm{R}} \\
& \left.+\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} / \mathrm{R}+2 \omega \cos \beta \cos \psi_{\mathrm{R}}\right\} \mathrm{DEG} \\
& F(K 4)=d V_{R} / d t=(T \cos \alpha-D) G_{o} / W-G \sin \gamma_{R} \\
& +\mu^{2} \mathrm{R} \cos \beta\left(\cos \beta \sin \gamma_{\mathrm{R}}-\sin \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right) \\
& F(K 5)=d \beta / d t=V_{R} \cos \gamma_{R} \sin \psi_{R} D E G / R \\
& \mathrm{~F}(\mathrm{~K} 6)=\mathrm{d} \psi_{\mathrm{R}} / \mathrm{dt}=-\left[(\mathrm{T} \sin \alpha+\mathrm{L}) \sin \varphi \mathrm{G}_{\mathrm{o}} /\left(\mathrm{W} \mathrm{~V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)\right. \\
& +\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \beta \cos \psi_{\mathrm{R}} /(\mathrm{R} \cos \beta)+2 \omega(\sin \beta \\
& \left.-\sin \gamma_{\mathrm{R}} \cos \beta \sin \psi_{\mathrm{R}} / \cos \gamma_{\mathrm{R}}\right)+\omega^{2} \mathrm{R} \sin \beta \cos \beta \cos \psi_{\mathrm{R}} / \\
& \left.\left(\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)\right] \mathrm{DEG} \\
& F(K 7)=d \lambda / d t=V_{R} \cos \gamma_{R} \cos \psi_{R} D E G /(R \cos \beta) \\
& \mathrm{F}(\mathrm{~K} 8)=\mathrm{dTD} / \mathrm{dt}=1 \\
& \mathrm{~F}(\mathrm{~K} 9)=\mathrm{dRNG} / \mathrm{dt}=\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} /(6076.103 \mathrm{R}) \\
& F(\mathrm{~K} 10)=\mathrm{dAHI} / \mathrm{dt}=\mathrm{Q} \mathrm{~V}_{\mathrm{R}} \\
& \mathrm{~F}(\mathrm{~K} 11)=\mathrm{d} \Delta \mathrm{~V} / \mathrm{dt}=\mathrm{TG}_{\mathrm{o}} / \mathrm{W}+\omega^{2} \mathrm{R} \cos \beta\left(\cos \beta \sin \gamma_{\mathrm{R}}-\sin \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right) \\
& F(\mathrm{~K} 12)=\mathrm{dGL} / \mathrm{dt}=\mathrm{G} \sin \gamma_{\mathrm{R}} \\
& \mathrm{~F}(\mathrm{~K} 13)=\mathrm{d} \mathrm{DL} / \mathrm{dt}=\mathrm{DG} \mathrm{o}_{\mathrm{o}} / \mathrm{W} \\
& \mathrm{~F}(\mathrm{~K} 14)=\mathrm{d} T \mathrm{VL} / \mathrm{dt}=\mathrm{T}(1-\cos \alpha) \mathrm{G}_{\mathrm{o}} / \mathrm{W}
\end{aligned}
$$

$\mathrm{F}(\mathrm{K} 15)=\mathrm{dER} / \mathrm{dt}=\mathrm{dH} / \mathrm{dt}+\mathrm{V}_{\mathrm{R}} / \mathrm{dt} / \mathrm{Go}$
F(K16)
F(K17) Not defined; available for growth
F(K18)
F(K19)
F(K20)
$\mathrm{F}(\mathrm{K} 21)=\mathrm{d} \theta * / \mathrm{dt}=\left(\theta-\theta_{\lim }(\mathrm{t})\right)^{2}$
$\mathrm{F}(\mathrm{K} 22)=\mathrm{d} \varphi * / \mathrm{dt}=\left(\varphi-\varphi_{\lim }(\mathrm{t})\right)^{2}$
$\mathrm{F}(\mathrm{K} 23)=\mathrm{d} \eta^{*} / \mathrm{dt}=\left(\left(\eta-\eta_{\lim }(\mathrm{H}, \mathrm{M})\right)^{2}\right.$
$\mathrm{F}(\mathrm{K} 24)=\mathrm{d} \Lambda * / \mathrm{dt}=\left(\Lambda-\Lambda_{\lim }(\mathrm{H}, \mathrm{M})\right)^{2}$
$F(\mathrm{~K} 25)=\mathrm{d} \alpha^{*} / \mathrm{dt}=\left(\alpha-\alpha_{\lim }(\mathrm{H}, \mathrm{M})\right)^{2}$
F(K26) $=$ Not defined, available for growth
$F(\mathrm{~K} 27)=\mathrm{dHD} * / \mathrm{dt}=\left(\mathrm{dH} / \mathrm{dt}-\mathrm{dH} / \mathrm{dt}_{\lim }(\mathrm{H})\right)^{2}$
$\mathrm{F}(\mathrm{K} 28)=\mathrm{dQt} * / \mathrm{dt}=\left(\mathrm{Q}-\mathrm{Q}_{\lim }(\mathrm{t})\right)^{2}$
$F(\mathrm{~K} 29)=\mathrm{dQM}^{*} / \mathrm{dt}=\left(\mathrm{Q}-\mathrm{Q}_{\lim }(\mathrm{M})\right)^{2}$
$\mathrm{F}(\mathrm{K} 30)=\mathrm{dQ} \alpha^{*} / \mathrm{dt}=\left(\mathrm{Q} \alpha-\mathrm{Q} \alpha_{\lim }(\mathrm{M})\right)^{2}$
$\mathrm{F}(\mathrm{K} 31)=\mathrm{dTEMP} * / \mathrm{dt}=\left(\text { TEMP }- \text { TEMP }_{\lim }(\mathrm{t})\right)^{2}$
$\mathrm{F}(\mathrm{K} 32)=\mathrm{dN} * / \mathrm{dt}=\left(\mathrm{N}-\mathrm{N}_{\mathrm{lim}}(\mathrm{H}, \mathrm{M})\right)^{2}$
$\mathrm{F}(\mathrm{K} 33)=\mathrm{dRPA} * / \mathrm{dt}=\left(\mathrm{RPA}-\mathrm{RPA}_{\mathrm{lim}_{i m}}(\mathrm{t})\right)^{2}$
$F(\mathrm{~K} 34)=\mathrm{dH} * / \mathrm{dt}=\left(\mathrm{H}-\mathrm{H}_{\lim }(\mathrm{M})\right)^{2}$
$\mathrm{F}(\mathrm{K} 35)=\mathrm{d} \Delta \mathrm{P} * / \mathrm{dt}=\left(\Delta \mathrm{P}-\Delta \mathrm{P}_{\lim }(\lambda, \beta)\right)^{2}$
$F(\mathrm{~K} 36)=\mathrm{dM} * / \mathrm{dt}=\left(\mathrm{M}-\mathrm{M}_{\lim }(\mathrm{H})\right)^{2}$
F(K37) Not defined; available for growth
$F(\mathrm{~K} 38)=\mathrm{d} \gamma^{*} / \mathrm{dt}=\left(\gamma-\gamma_{\mathrm{lim}}(\mathrm{H}, \mathrm{M})\right)^{2}$
$\left.\begin{array}{l}\mathrm{F}(\mathrm{K} 39) \\ \mathrm{F}(\mathrm{K} 40)\end{array}\right\} \quad$ Not defined; available for growth

Partial Derivatives

The equations defining the partial derivatives of the equations of motion with respect to the state variables are given as $\operatorname{PFX}(A, B)$ where the first argument, A, identifies the equation of motion and the second, B, identifies the derivative state variables. The partial derivative with respect to the control variables are
given as $\operatorname{PFU}(\mathrm{A}, \mathrm{B})$, where again the first argument identifies the equation of motion and the second identifies the derivative control variable.

$$
\begin{aligned}
& \operatorname{PFX}(K 1, K 2)=-\partial \dot{W} / \partial H \\
& \operatorname{PFX}(\mathrm{~K} 1, \mathrm{~K} 3)=-\partial \mathrm{W} / \partial \alpha \cdot \partial \alpha / \partial \gamma_{\mathrm{R}} \\
& \operatorname{PFX}(\mathrm{~K} 1, \mathrm{~K} 4)=-\partial \dot{W} / \partial \mathrm{V}_{\mathrm{R}} \\
& \operatorname{PFU}(\mathrm{~K} 1, \mathrm{I} 1)=-\partial \mathrm{W} / \partial \alpha \cdot \partial \alpha / \partial \theta \\
& \operatorname{PFU}(\mathrm{K} 1, \mathrm{I} 3)=-\partial \dot{\mathrm{W}} / \partial \eta \\
& \operatorname{PFX}(\mathrm{K} 2, \mathrm{~K} 3)=\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cdot \mathrm{RAD} \\
& \operatorname{PFX}(K 2, K 4)=\sin \gamma_{R} \\
& \operatorname{PFX}(\mathrm{~K} 3, \mathrm{~K} 1)=-(\mathrm{T} \sin \alpha+\mathrm{L}) \cos \varphi \mathrm{G}_{\mathrm{O}} \mathrm{DEG} /\left(\mathrm{W}^{2} \mathrm{~V}_{\mathrm{R}}\right) \\
& \operatorname{PFX}(\mathrm{K} 3, \mathrm{~K} 2)=\left\{\left[\begin{array}{ll}
(\partial \mathrm{T} / \partial \mathrm{H} & \sin \alpha+\partial \mathrm{L} / \partial \mathrm{H}) \cos \varphi \mathrm{G}_{\mathrm{o}} / \mathrm{W}
\end{array}\right.\right. \\
& -\partial \mathrm{G} / \partial \mathrm{H} \cos \gamma_{\mathrm{R}}+\omega^{2} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}\right. \\
& \left.\left.+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}{ }^{\gamma}\right] / \mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} / \mathrm{R}^{2}\right\} \mathrm{DEG} \\
& \operatorname{PFX}(\mathrm{~K} 3, \mathrm{~K} 3)=\left[(\mathrm{T} \cos \alpha+(\partial \mathrm{T} / \partial \alpha \cdot \sin \alpha+\partial \mathrm{L} / \partial \alpha) \mathrm{DEG}) \cdot \partial \alpha / \partial \gamma_{\mathrm{R}} .\right. \\
& \cos \varphi \mathrm{G}_{\mathrm{O}} / \mathrm{W}+\mathrm{G} \sin \gamma_{\mathrm{R}}+\omega^{2} \mathrm{R} \cos \beta\left(-\cos \beta \sin \gamma_{\mathrm{R}}\right. \\
& \left.\left.+\sin \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right] / \mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} / \mathrm{R} \\
& \operatorname{PFX}(\mathrm{~K} 3, \mathrm{~K} 4)=\left\{-\left[(\mathrm{T} \sin \alpha+\mathrm{L}) \cos \varphi \mathrm{G}_{\mathrm{o}} / \mathrm{W}-\mathrm{G} \cos \gamma_{\mathrm{R}}\right.\right. \\
& \left.+\dot{u}^{2} \mathrm{R} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right] / \mathrm{V}_{\mathrm{R}}^{2} \\
& +\left(\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}} \sin \alpha+\partial \mathrm{L} / \partial \mathrm{V}_{\mathrm{R}}\right) \cos \varphi \mathrm{G}_{\mathrm{o}} /\left(\mathrm{W} \mathrm{~V}_{\mathrm{R}}\right) \\
& \left.+\cos \gamma_{R} / R\right\} \text { DEG } \\
& \operatorname{PFX}(\mathrm{K} 3, \mathrm{~K} 5)=\omega^{2} \mathrm{R}\left[\cos \beta\left(-\sin \beta \cos \gamma_{\mathrm{R}}+\cos \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right. \\
& -\sin \beta\left(\cos \beta \cos \gamma_{R}+\sin \beta \sin \gamma_{R} \sin \psi_{R}\right) / V_{R} \\
& -2 \omega \sin \beta \cos \psi_{\mathbf{R}} \\
& \operatorname{PFX}(\mathrm{K} 3, \mathrm{~K} 6)=\omega^{2} \mathrm{R} \cos \beta \sin \beta \sin \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} / \mathrm{V}_{\mathrm{R}} \\
& -2 \omega \cos \beta \sin \psi_{\mathrm{R}} \\
& \operatorname{PFU}(\mathrm{~K} 3, \mathrm{I} 1)=(\mathrm{T} \cos \alpha+(\partial \mathrm{T} / \partial \alpha \sin \alpha+\partial \mathrm{L} / \partial \alpha) \mathrm{DEG}) \cos \varphi \cdot \partial \alpha / \partial \varphi . \\
& \mathrm{G}_{\mathrm{o}} /\left(\mathrm{WV}_{\mathrm{R}}\right) \\
& \operatorname{PFU}(\mathrm{K} 3, \mathrm{I} 2)=-(\mathrm{T} \sin \alpha+\mathrm{L}) \sin \varphi \mathrm{G}_{\mathrm{o}} /\left(\mathrm{WV}_{\mathrm{R}}\right) \\
& \operatorname{PFU}(\mathrm{K} 3, \mathrm{I} 3)=\partial \mathrm{T} / \partial \eta \sin \alpha \cos \varphi \mathrm{G}_{\mathrm{o}} \cdot \mathrm{DEG} /\left(\mathrm{W} \mathrm{~V}_{\mathrm{R}}\right) \\
& \operatorname{PFU}(\mathrm{K} 3, \mathrm{I} 4)=\partial \mathrm{L} / \partial \Lambda \cdot \cos \varphi \mathrm{G}_{\mathrm{o}} \mathrm{DEG} /\left(\mathrm{W} \mathrm{~V}_{\mathrm{R}}\right)
\end{aligned}
$$

$\operatorname{PFX}(K 4, K 1)=-(T \cos \alpha-D) G_{0} / W^{2}$
$\operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 2)=(0 \mathrm{~T} / \partial \mathrm{H} \cos \alpha-\partial \mathrm{D} / \partial \mathrm{H}) \mathrm{G}_{\mathrm{O}} / \mathrm{W}-\partial \mathrm{G} / \partial \mathrm{H} \cdot \sin \gamma_{\mathrm{R}}$
$+\omega^{2} \cos \beta\left(\cos \beta \sin \gamma_{\mathrm{R}}-\sin \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)$
$\operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 3)=(-\mathrm{T} \sin \alpha \mathrm{RAD}+\delta \mathrm{T} / \partial \alpha \cos \alpha-\partial \mathrm{D} / \partial \alpha) \partial \alpha / \partial \gamma_{\mathrm{R}} \cdot \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$+\left[-\mathrm{G} \cos \gamma_{\mathrm{R}}+\omega^{2} \mathrm{R} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}\right.\right.$
$\left.\left.+\sin \beta \sin \gamma_{R} \sin \psi_{R}\right)\right] \cdot R A D$
$\operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 4)=\left(\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}} \cos \alpha-\partial \mathrm{D} / \partial \mathrm{V}_{\mathrm{R}}\right) \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 5)=\omega^{2} \mathrm{R}\left[\cos \beta\left(-\sin \beta \sin \gamma_{\mathrm{R}}-\cos \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right.$
$-\sin \beta\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right) R A D$
$\mathrm{PFX}(\mathrm{K} 4, \mathrm{~K} 6)=-\omega^{2} \mathrm{R} \cos \beta \sin \beta \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \cdot{ }_{\mathrm{RAD}}^{\mathrm{R}}$
$\operatorname{PFU}(\mathrm{K} 4, \mathrm{I} 1)=(\partial \mathrm{T} / \partial \alpha \cos \alpha-\partial \mathrm{D} / \partial \alpha-\mathrm{T} \sin \alpha \mathrm{RAD}) \partial \alpha / \partial \theta \cdot \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFU}(\mathrm{K} 4, \mathrm{I} 3)=\partial \mathrm{T} / \partial \eta \cos \alpha \mathrm{G}_{\mathrm{o}} / / \mathrm{W}$
$\operatorname{PFU}(\mathrm{K} 4, \mathrm{I} 4)=-\partial \mathrm{D} / \partial \Lambda \cdot \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFX}(\mathrm{K} 5, \mathrm{~K} 2)=-\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} \cdot \mathrm{DEG} / \mathrm{R}^{2}$
$\operatorname{PFX}(\mathrm{K} 5, \mathrm{~K} 3)=-\mathrm{V}_{\mathbf{R}} \sin \gamma_{\mathbf{R}} \sin \psi_{\mathbf{R}} / \mathrm{R}$
$\operatorname{PFX}(\mathrm{K} 5, \mathrm{~K} 4)=\cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} / \mathrm{R}$
$\operatorname{PFX}(\mathrm{K} 5, \mathrm{~K} 6)=\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} / \mathrm{R}$
$\left.\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 1)=(\mathrm{T} \sin \alpha+\mathrm{L}) \sin \varphi_{\mathrm{R}} \mathrm{G} \mathrm{DEG} / \mathrm{W}^{2} \mathrm{~V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)$
$\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 2)=\left[-(\partial \mathrm{T} / \partial \mathrm{H} \sin \alpha+\partial \mathrm{L} / \partial \mathrm{H}) \sin \varphi \mathrm{G}_{\mathrm{o}} /\left(\mathrm{W} \mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)\right.$
$+\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \sin \beta /\left(\mathrm{R}^{2} \cos \beta\right)$
$\left.-\omega^{2} \sin \beta \cos \beta \cos \psi_{R} /\left(V_{R} \cos \gamma_{R}\right)\right] . D E G$
$\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 3)=\{[-(\partial \mathrm{T} / \partial \alpha \cdot \sin \alpha+\partial \mathrm{L} / \partial \alpha) \mathrm{DEG}-\mathrm{T} \cos \alpha]$.
$\left.\partial \alpha / \partial \gamma_{R}-(T \sin \alpha+L) \sin \gamma_{R} / \cos \gamma_{R}\right\} \sin \varphi G_{o} /$
$\left(W V_{R} \cos \gamma_{R_{2}}\right)+\left(2 \sin \psi_{R}-\omega R \sin \beta \cos \psi_{R} \sin \gamma_{R} / V_{R}\right)$.
$\omega \cos \beta / \cos ^{2} \gamma_{R}+V_{R} \sin \beta \sin \gamma_{R} \cos \psi_{R} /(R \cos \beta)$
$\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 4)=\left\{\left\{\left[\mathrm{T} \sin \alpha+\mathrm{V}_{\mathrm{R}}\left(-\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}} \cdot \sin \alpha-\partial \mathrm{L} / \partial \mathrm{V}_{\mathrm{R}}\right)\right]\right.\right.$.
$\left.\sin \varphi G_{0} / W+\omega^{2} R \sin \beta \cos \beta \cos \psi_{R}\right\} /\left(V_{R}^{2} \cos \gamma_{R}\right)$
$\left.-\cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \sin \beta /(\mathrm{R} \cos \beta)\right\} \mathrm{DEG}$
$\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 5)=-\mathrm{V}_{\mathrm{R}} \cos _{\mathrm{R}} \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} /\left(\mathrm{R} \cos ^{2} \beta\right)-2 \omega\left(\cos \beta+\sin \gamma_{\mathrm{R}} \sin \beta\right.$.
$\left.\sin \psi_{R} / \cos \gamma_{R}\right)-\omega^{2} R\left(\cos ^{2} \beta-\sin ^{2} \beta\right) \cos \psi_{R} /\left(V_{R} \cos \gamma_{R}\right)$
$\operatorname{PFX}(\mathrm{K} 6, \mathrm{~K} 6)=\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} \sin \beta /(\mathrm{R} \cos \beta)+2 \omega \sin \gamma_{\mathrm{R}} \cdot$ $\cos \beta \cos \psi_{R} / \cos \gamma_{R}+\omega^{2} R \sin \beta \cos \beta \sin \psi_{R} /$ $\left(V_{R} \cos \gamma_{R}\right)$
$\mathrm{PFU}(\mathrm{K} 6, \mathrm{I} 1)=[-(\mathrm{T} \cos \alpha \mathrm{RAD}+\Delta \mathrm{T} / \partial \alpha \sin \alpha+\partial \mathrm{L} / \partial \alpha) \partial \alpha / \partial \theta$.
$\left.\left.\sin \varphi G_{o} / W V_{R} \cos \gamma_{R}\right)\right] D E G$
$\operatorname{PFU}(\mathrm{K} 6, \mathrm{I} 2)=-(\mathrm{T} \sin \alpha+\mathrm{L}) \cos \varphi \mathrm{G}_{\mathrm{o}} /\left(\mathrm{W} \mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)$
$\operatorname{PFU}(\mathrm{K} 6, \mathrm{I} 3) \quad=-\partial \mathrm{T} / \partial \eta \sin \alpha \sin \psi_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \mathrm{DEG} /\left(\mathrm{W} \mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)$
$\operatorname{PFU}(\mathrm{K} 6, \mathrm{I} 4) \quad=-\partial \mathrm{L} / \partial \Lambda \sin \varphi \mathrm{G}_{\mathrm{o}} \mathrm{DEG} /\left(\mathrm{W} \mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}\right)$
$\operatorname{PFX}(\mathrm{K} 7, \mathrm{~K} 2) \quad=-\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \mathrm{DEG} /\left(\mathrm{R}^{2} \cos \beta\right)$
$\operatorname{PFX}(\mathrm{K} 7, \mathrm{~K} 3)=-\mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \mathrm{DEG} /(\mathrm{R} \cos \beta)$
$\operatorname{PFX}(\mathrm{K} 7, \mathrm{~K} 4)=\cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \mathrm{DEG} /(\mathrm{R} \cos \beta)$
$\operatorname{PFX}(K 7, K 5)=V_{R} \cos \gamma_{R} \cos \psi_{R} \sin \beta /\left(R \cos ^{2} \beta\right)$
$\operatorname{PFX}(\mathrm{K} 7, \mathrm{~K} 6)=-\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} /(\mathrm{R} \cos \beta)$
$\operatorname{PFX}(\mathrm{K} 9, \mathrm{~K} 2)=-\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} /\left(6076.103 \mathrm{R}^{2}\right)$
$\operatorname{PFX}(\mathrm{K} 9, \mathrm{~K} 3)=-\mathrm{V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} /(6076.103 \mathrm{R})$
$\operatorname{PFX}(\mathrm{K} 9, \mathrm{~K} 4)=\cos \gamma_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} /(6076.103 \mathrm{R})$
$\operatorname{PFX}(\mathrm{K} 10, \mathrm{~K} 2) \quad=\mathrm{V}_{\mathrm{R}} \boldsymbol{\partial} \mathrm{Q} / \boldsymbol{\partial} \mathrm{H}$
$\operatorname{PFX}(\mathrm{K} 10, \mathrm{~K} 4)=3 \mathrm{Q}$
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 1)=-\mathrm{T} \mathrm{G}_{\mathrm{o}} / \mathrm{W}^{2}$
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 2)=\partial \mathrm{T} / \partial \mathrm{H} \mathrm{G}_{\mathrm{o}} / \mathrm{W}+\mu^{2} \cos \beta\left(\cos \beta \sin \gamma_{\mathrm{R}}\right.$
$\left.-\sin \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)$
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 3)=\delta \mathrm{T} / \partial \alpha \cdot \partial \alpha / \delta \gamma_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} / \mathrm{W}+\omega^{2} \mathrm{R} \cos \beta\left(\cos \beta \cos \gamma_{\mathrm{R}}\right.$
$+\sin \beta \sin \gamma_{R} \sin \psi_{R}$ RAD
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 4)=0 \mathrm{~T} / \partial \mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 5)=\omega^{2} \mathrm{R}\left[\cos \beta\left(-\sin \beta \sin \gamma_{\mathrm{R}}-\cos \beta \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\right.$
$\left.-\sin \beta\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right)\right]$ RAD
$\operatorname{PFX}(\mathrm{K} 11, \mathrm{~K} 6)=-\omega^{2} \mathrm{R} \cos \beta \sin \beta \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}} \mathrm{RAD}$
$\operatorname{PFU}(\mathrm{K} 11, \mathrm{I} 1)=\delta \mathrm{T} / \partial \alpha \cdot \partial \alpha / \partial \theta \cdot \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFU}(\mathrm{K} 11,13)=0 \mathrm{~T} / \partial \eta \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\operatorname{PFX}(K 12, K 2)=0 G / \partial H \sin \gamma_{R}$
$\operatorname{PFX}(\mathrm{K} 12, \mathrm{~K} 3)=\mathrm{G} \cos \gamma_{\mathrm{R}} \mathrm{RAD}$.

PFX(K13, K1)	$=-\mathrm{D} \mathrm{G}_{\mathrm{o}} / \mathrm{W}^{2}$
PFX(K13, K2)	$=\partial \mathrm{D} / \partial \mathrm{H} \mathrm{G}_{\mathrm{O}} / \mathrm{W}$
PFX(K13, K3)	$=\partial \mathrm{D} / \partial \alpha \quad \partial \alpha / \partial \gamma_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
PFX(K13, K4)	$=\partial \mathrm{D} / \partial \mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
PFU(K13, I1)	$=\partial \mathrm{D} / \partial \alpha \partial \alpha / \partial \theta \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
PFU(K13, I4)	$=\partial \mathrm{D} / \Delta \Lambda \quad \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
PFX(K14, K1)	$=-\mathrm{T}(1-\cos \alpha) \mathrm{G}_{\mathrm{o}} / \mathrm{W}^{2}$
PFX(K14, K2)	$=\partial \mathrm{T} / \partial \mathrm{H}(1-\cos \alpha) \mathrm{G}_{\mathrm{O}} / \mathrm{W}$
PFX(K14, K3)	$=(\partial \mathrm{T} / \partial \alpha(1-\cos \alpha)+\mathrm{T} \sin \alpha \mathrm{RAD}) \partial \alpha / \partial \gamma_{R} \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
PFX(K14, K4)	$=\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}}(1-\cos \alpha) \mathrm{G}_{\mathrm{o}} / \mathrm{W}$
$\mathrm{PFU}(\mathrm{K} 14, \mathrm{I} 1)$	$=\partial \mathrm{T} / \partial \alpha(1-\cos \alpha)+\mathrm{T} \sin \alpha \mathrm{RAD}) \partial \alpha / \partial \theta \mathrm{G}_{\mathrm{O}} / \mathrm{W}$
PFU(K14, I3)	$=\partial \mathrm{T} / \partial \eta(1-\cos \alpha) \mathrm{G}_{\mathrm{O}} / \mathrm{W}$
PFX(K15, K1)	$=V_{R} G_{0} \operatorname{PFX}(\mathrm{~K} 4, \mathrm{~K} 1)$
PFX(K15, K2)	$=\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 2)$
PFX(K15, K3)	$=\operatorname{PFX}(\mathrm{K} 2, \mathrm{~K} 3)+\left(\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 3)\right.$
PFX(K15, K4)	$=\operatorname{PFX}(\mathrm{K} 2, \mathrm{~K} 4)+\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{O}} \operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 4)+\mathrm{dV}_{\mathrm{R}} / \mathrm{dt} / \mathrm{Go}$
PFX(K15, K5)	$=V_{R} \mathrm{G}_{\mathrm{O}} \operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 5)$
PFX(K15, K6)	$=\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{O}} \operatorname{PFX}(\mathrm{K} 4, \mathrm{~K} 6)$
PFU(K15, I1)	$=\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \mathrm{PFU}(\mathrm{K} 4, \mathrm{I} 1)$
$\mathrm{PFU}(\mathrm{K} 15, \mathrm{I} 2)$	$-\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \operatorname{PFU}(\mathrm{K} 4, \mathrm{I} 2)$
PFU(K15, I3)	$=\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{O}} \mathrm{PFU}(\mathrm{K} 4, \mathrm{I} 3)$
PFU(K15, I4)	$=\mathrm{V}_{\mathrm{R}} \mathrm{G}_{\mathrm{o}} \operatorname{PFU}(\mathrm{K} 4, \mathrm{I} 4)$
PFU(K21, I1)	$=2\left(\theta-\theta_{\text {lim }}{ }^{\prime}\right.$
PFU(K22, 12)	$=2\left(\omega-\omega_{\text {lim }}\right)$
PFX(K23, K2)	$=-2\left(\eta-\eta_{\mathrm{lim}}\right)\left(\partial \eta_{\lim } / \partial \mathrm{H}+\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \eta_{\mathrm{lim}} / \partial \mathrm{M}\right)$
PFX(K23, K4)	$=-2\left(\eta-\eta_{\mathrm{lim}}\right)\left(\partial \eta_{\mathrm{lim}} / \partial \mathrm{M} \cdot \partial \mathrm{M} / \partial \mathrm{V}\right)$
$\mathrm{PFU}(\mathrm{K} 23, \mathrm{I} 3)$	$=2\left(\eta-\eta_{l i m}\right)$
PFX(K24, K2)	$=-2\left(\Lambda-\Lambda_{\text {lim }}\right)\left(\partial \Lambda_{\lim } / \partial \mathrm{H}+\boldsymbol{\partial} \Lambda_{\mathrm{lim}} / \partial \mathrm{M} ~ \partial \mathrm{M} / \partial \mathrm{H}\right)$
PFX(K24, K4)	$=-2\left(\Lambda-\Lambda_{\mathrm{lim}}\right) \partial \Lambda_{\mathrm{lim}} \cdot / \partial \mathrm{M} \cdot \partial \mathrm{M} / \partial \mathrm{V}$
$\operatorname{PFU}(\mathrm{K} 24, \mathrm{I} 4)$	$=2\left(\Lambda-\Lambda_{1 \mathrm{im}}\right)$
PFX(K25, K2)	$=-2\left(\alpha-\alpha_{\text {lim }}\right)\left(\partial \alpha_{\text {lim }} / \partial \mathrm{H}+\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \alpha_{\mathrm{lim}} / \partial \mathrm{M}\right)$
PFX(K25, K3)	$=2\left(\alpha-\alpha_{\text {lim }}\right) \partial \alpha / \partial \gamma_{\mathrm{R}}$

PFX(K25, K4)	$=-2\left(\alpha-\alpha_{1 \mathrm{im}}\right) \partial \alpha_{\lim } / \partial \mathrm{M} \cdot \partial \mathrm{M} / \partial \mathrm{V}$
PFU(K25, I1)	$=2\left(\alpha-\alpha_{\lim }\right) \theta \alpha / \delta \theta$
PFX(K27, K2)	$=-\left[\begin{array}{ll}2 & \left.\mathrm{~F}(\mathrm{~K} 2)-\mathrm{HD}_{\mathrm{lim}}\right]\end{array} \mathrm{\partial HD}{ }_{\lim } / \partial \mathrm{H}\right.$
PFX(K27, K3)	$=2\left[F(\mathrm{~K} 2)-\mathrm{HD}_{\mathrm{lim}}\right] \operatorname{PFX}(\mathrm{K} 2, \mathrm{~K} 3)$
PFX(K27, K4)	$=2\left[F(\mathrm{~K} 2)-\mathrm{HD}_{\mathrm{lim}}\right] \operatorname{PFX}(\mathrm{K} 2, \mathrm{~K} 4)$
PFX(K28, K2)	$=2\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{lim}}\right) \partial \mathrm{Q} / \partial \mathrm{H}$
PFX(K28, K4)	$=2(\mathrm{Q}-\mathrm{Q}$ lim$) ~ \partial \mathrm{Q} / \partial \mathrm{V}_{\mathrm{R}}$
PFX(K29, K2)	$=2\left(\mathrm{Q}-\mathrm{Q}_{\lim }\right)(\partial \mathrm{Q} / \partial \mathrm{H}-\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \mathrm{Q} \lim / \partial \mathrm{M})$
PFX(K29, K4)	$=2\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{lim}}\right)\left(\partial \mathrm{Q} / \partial \mathrm{V}_{\mathrm{R}}-\partial \mathrm{M}^{\prime} / \partial \mathrm{V}_{\mathrm{R}} \cdot \partial \mathrm{Q}_{\lim } / \partial \mathrm{M}\right)$
PFX(K30, K2)	$=2\left(\mathrm{Q} \alpha-\mathrm{Q} \alpha_{\mathrm{lim}}\right)\left(\alpha \partial \mathrm{Q} / \partial \mathrm{H}-\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \mathrm{Q} \alpha_{\mathrm{lim}} / \partial \mathrm{M}\right)$
PFX(K30, K3)	$=2\left(\mathrm{Q} \alpha-\mathrm{Q} \alpha_{\mathrm{lim}}\right)\left(\mathrm{Q} \cdot \partial \alpha / \partial \gamma_{\mathrm{R}}\right.$
PFX(K30, K4)	$=2\left(\mathrm{Q} \alpha-\mathrm{Q} \alpha_{\lim }\right)\left(\alpha \partial \mathrm{Q} / \partial \mathrm{V}_{\mathrm{R}}-\partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}} \cdot \partial \mathrm{Q} \alpha_{\lim } / \partial \mathrm{M}\right)$
PFU(K30, Il)	$=2(Q \alpha-Q \alpha \lim) \mathrm{Q} \boldsymbol{\partial \alpha} / \boldsymbol{\partial \theta}$
PFX(K31, K2)	$\begin{aligned} & =2\left(\text { TEMP }-\mathrm{TEMP}_{1 \mathrm{im}}\right)\left[\left(1+0.2 \mathrm{M}^{2}\right) \partial \mathrm{TEM} / \partial \mathrm{H}\right. \\ & +0.4 \mathrm{M} \cdot \mathrm{TEM} \cdot \partial \mathrm{M} / \partial \mathrm{H}] \end{aligned}$
PFX(K31, K4)	$=2\left(\right.$ TEMP $\left.-\mathrm{TEMP}_{1 \mathrm{lim}}\right)\left(0.4 \mathrm{M} \cdot \mathrm{TEM} \cdot \partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}}\right)$
PFX(K32, K1)	$=-2\left(\mathrm{~N}-\mathrm{N}_{\lim }\right) \mathrm{N} / \mathrm{W}$
PFX(K32, K2)	$\begin{aligned} & =2(\mathrm{~N}-\mathrm{N} \lim)[(\partial \mathrm{L} / \partial \mathrm{H} \cos \alpha+\partial \mathrm{D} / \partial \mathrm{H} \cdot \sin \alpha) / \mathrm{W} \\ & \left.-\left(\partial \mathrm{N}_{\mathrm{lim}} / \partial \mathrm{H}+\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \mathrm{~N} \lim / \partial \mathrm{M}\right)\right] \end{aligned}$
PFX(K32, K3)	$\begin{aligned} & =2(\mathrm{~N}-\mathrm{N} \lim)[(-\mathrm{L} \sin \alpha+\mathrm{D} \cos \alpha) \mathrm{RAD} \\ & +\partial \mathrm{L} / \partial \alpha \cos \alpha+\partial \mathrm{D} / \partial \alpha \sin \alpha]\left(\partial \alpha / \partial \gamma_{\mathrm{R}}\right) / \mathrm{W} \end{aligned}$
PFX(K32, K4)	$\begin{aligned} & =2\left(\mathrm{~N}-\mathrm{N}_{\lim }\right)\left[\left(\partial \mathrm{L} / \partial \mathrm{V}_{\mathrm{R}} \cos \alpha+\partial \mathrm{D} / \partial \mathrm{V}_{\mathrm{R}} \sin \alpha\right) / \mathrm{W}\right. \\ & \left.-\partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}} \cdot \partial \mathrm{~N}_{\lim } / \partial \mathrm{M}\right] \end{aligned}$
PFU(K32, I1)	$\begin{aligned} & =2\left(\mathrm{~N}-\mathrm{N}_{\lim }\right)(-\mathrm{L} \sin \alpha+\mathrm{D} \cos \alpha) \mathrm{RAD} \\ & +\partial \mathrm{L} / \partial \alpha \cos \alpha+\partial \mathrm{D} / \partial \alpha \sin \alpha](\partial \alpha / \partial \theta) / \mathrm{W} \end{aligned}$
PFU(K32, I4)	$=2\left(\mathrm{~N}-\mathrm{N}_{\lim }\right)(\partial \mathrm{L} / \partial \Lambda \cos \alpha+\partial \mathrm{D} / \partial \Lambda \sin \alpha) / \mathrm{W}$
PFX(K33, K1)	$\left.=-2(\mathrm{RPA})-\mathrm{RPA} \mathrm{lim}_{\text {l }}\right) \mathrm{RPA} / \mathrm{W}$
PFX(K33, K2)	

PFX(K33, K3)

PFX(K33, K4)
$=2\left(\mathrm{RPA}-\mathrm{RPA}_{\lim }\right) \mathrm{G}_{\mathrm{o}}{ }^{2} /\left(\mathrm{W}^{2} \mathrm{RPA}\right)[(\mathrm{L}+\mathrm{T} \sin \alpha)(\partial \mathrm{L} / \partial \alpha$
$+\partial \mathrm{T} / \partial \alpha \sin \alpha+\mathrm{T} \cos \alpha \cdot \mathrm{RAD})+(\mathrm{D}-\mathrm{T} \cos \alpha)(\partial \mathrm{D} / \partial \alpha$
$-\partial \mathrm{T} / \partial \alpha \cos \alpha+\mathrm{T} \sin \alpha \cdot \mathrm{RAD})] \partial \alpha / \partial \gamma_{\mathrm{R}}$
$=2\left(\mathrm{RPA}-\mathrm{RPA}_{\mathrm{lim}}\right) \mathrm{G}_{\mathrm{o}}^{2} /\left(\mathrm{W}^{2} \mathrm{RPA}\right)\left[\left(\mathrm{L}+{ }^{-} \mathrm{T} \sin \alpha\right)\left(\partial \mathrm{L} / \partial \mathrm{V}_{\mathrm{R}}\right.\right.$
$\left.+\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}} \cdot \sin \alpha\right)+(\mathrm{D}-\mathrm{T} \cos \alpha)\left(\partial \mathrm{D} / \partial \mathrm{V}_{\mathrm{R}}-\partial \mathrm{T} / \mathrm{V}_{\mathrm{R}} \cdot\right.$ $\cos \alpha)]$
$\operatorname{PFU}(\mathrm{K} 33, \mathrm{I} 1)=2\left(\mathrm{RPA}-\mathrm{RPA}{ }_{\lim }\right) \mathrm{G}_{\mathrm{o}}{ }^{2} /\left(\mathrm{W}^{2} \mathrm{RPA}\right)[(\mathrm{L}+\mathrm{T} \sin \alpha)(\partial \mathrm{L} / \partial \alpha$
$+\partial \mathrm{T} / \partial \alpha \sin \alpha+\mathrm{T} \cos \alpha \cdot \mathrm{RAD})+(\mathrm{D}-\mathrm{T} \cos \alpha)(\partial \mathrm{D} / \partial \alpha$
$-\partial \mathrm{T} / \partial \alpha \cos \alpha+\mathrm{T} \sin \alpha \cdot \mathrm{RAD})] \partial \alpha / \partial \theta$
$\operatorname{PFU}(\mathrm{K} 33, \mathrm{I} 3)=2\left(\mathrm{RPA}-\mathrm{RPA}_{\mathrm{lim}}\right) \mathrm{G}_{\mathrm{o}}{ }^{2} /\left(\mathrm{W}^{2} \mathrm{RPA}\right)[(\mathrm{L}+\mathrm{T} \sin \alpha)$ $\partial \mathrm{T} / \partial \eta \cdot \sin \alpha-(\mathrm{D}-\mathrm{T} \cos \alpha) \partial \mathrm{T} / \partial \eta \cdot \cos \alpha]$
$\operatorname{PFU}(\mathrm{K} 33, \mathrm{I} 4)=2\left(\mathrm{RPA}_{\lim }\right) \mathrm{G}_{\mathrm{o}}^{2} /\left(\mathrm{W}^{2} \mathrm{RPA}\right)[(\mathrm{L}+\mathrm{T} \sin \alpha) \cdot \partial \mathrm{L} / \partial \Lambda$

$$
+(D-T \cos \alpha) \partial D / \partial \Lambda]
$$

$\operatorname{PFX}(\mathrm{K} 34, \mathrm{~K} 2)=2\left(\mathrm{H}-\mathrm{H}_{\mathrm{lim}}\right)\left(1-\partial \mathrm{M} / \partial \mathrm{H} \cdot \partial \mathrm{H}_{\mathrm{lim}} / \partial \mathrm{M}\right)$
$\operatorname{PFX}(\mathrm{K} 34, \mathrm{~K} 4)=2\left(\mathrm{H}-\mathrm{H}_{\mathrm{lim}}\right)\left(\partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}} \cdot \partial \mathrm{H}_{\mathrm{lim}} / \partial \mathrm{M}\right)$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 2)=\left[\mathrm{F}(\mathrm{K} 35)_{\mathrm{H}}+100-\mathrm{F}(\mathrm{K} 35)_{\mathrm{H}}\right] / 100$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 3)=\left[\mathrm{F}(\mathrm{K} 35)_{\alpha}+0.1-\mathrm{F}(\mathrm{K} 35)_{\alpha}\right]{ }^{\left(\partial \alpha / \delta \gamma_{\mathrm{R}}\right) / 0.1}$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 4)=\left[\mathrm{F}(\mathrm{K} 35)_{\mathrm{V}_{\mathrm{R}}}+10-\mathrm{F}(\mathrm{K} 35)_{\mathrm{V}_{\mathrm{R}}}\right] / 10$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 5)=\left[\mathrm{F}(\mathrm{K} 35)_{\beta}+0.1-\mathrm{F}(\mathrm{K} 35)_{\beta}\right] / 0.1$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 6)=\left[\mathrm{F}(\mathrm{K} 35) \psi+0.1-\mathrm{F}(\mathrm{K} 35)_{\psi}\right] / 0.1$
$\operatorname{PFX}(\mathrm{K} 35, \mathrm{~K} 7)=\left[\mathrm{F}(\mathrm{K} 35)_{\lambda}+0.1-\mathrm{F}(\mathrm{K} 35)_{\lambda}\right] / 0.1$
$\left.\operatorname{PFU}(\mathrm{K} 35, \mathrm{II})=\left[\mathrm{F}_{\mathrm{K}} \mathrm{K}_{3}\right)_{\alpha}{ }_{\alpha}+0.1-\mathrm{F}(\mathrm{K} 35)_{\alpha}{ }^{2}\right](\partial \alpha / \theta \theta) / 0.1$
$\operatorname{PFU}(\mathrm{K} 35, \mathrm{I} 4)=\left[\mathrm{F}^{(\mathrm{K} 35)_{\Lambda}}{ }_{\Lambda}+0.1-\mathrm{F}\left(\mathrm{K}^{2} 35\right)_{\Lambda}\right] / 0.1$
$\operatorname{PFX}(\mathrm{K} 36, \mathrm{~K} 2)=2\left(\mathrm{M}-\mathrm{M}_{\mathrm{lim}}\right)\left(\partial \mathrm{M} / \partial \mathrm{H}-\partial \mathrm{M}_{\mathrm{lim}} / \partial \mathrm{H}\right)$
$\operatorname{PFX}(\mathrm{K} 36, \mathrm{~K} 4)=2\left(\mathrm{M}-\mathrm{M}_{\mathrm{lim}}\right) \partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}}$
$\operatorname{PFX}(\mathrm{K} 38, \mathrm{~K} 2) \quad=-2\left(\gamma_{\mathrm{R}}-\gamma_{\mathrm{R}_{\mathrm{lim}}}\right)\left(\partial \gamma_{\mathrm{R}_{\mathrm{lim}}} / \partial \mathrm{H}+\partial \gamma_{\mathrm{R}_{\lim }} / \partial \mathrm{M} \partial \mathrm{M} / \partial \mathrm{H}\right)$
$\operatorname{PFX}(\mathrm{K} 38, \mathrm{~K} 3)=2\left(\gamma_{\mathbf{R}}-\gamma_{\mathrm{R}_{\mathrm{lim}}}\right)$
$\operatorname{PFX}(\mathrm{K} 38, \mathrm{~K} 4)=-2\left(\gamma_{\mathrm{R}}-\gamma_{\mathrm{R}_{\mathrm{lim}}}\right) \partial \gamma_{\mathrm{R}_{\mathrm{lim}}} / \partial \mathrm{M} \quad \partial \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}}$

The auxiliary printout variables, AK(), are functions that are desired for printout in addition to the state and control variables. The argument identifies the variable as given in figure 13. State variables and printout variables in metric units are also defined as AK's.

$$
\begin{aligned}
& \text { AK(1) } \quad=T=(\eta \text { Tref XKT }-\mathrm{PAe} / 144) \operatorname{Cos} \delta_{c} \\
& \operatorname{AK}(2) \quad=\mathrm{L}=\mathrm{C}_{\mathrm{L}} \mathrm{QS}_{\text {ref }} \\
& \text { AK(3) } \quad=D=C_{D} Q_{\text {ref }} \\
& \mathrm{AK}(4) \quad=\mathrm{Q}=0.5 \rho \mathrm{~V}_{\mathrm{R}}{ }^{2} \\
& \operatorname{AK}(5) \quad=M=V_{R} / V_{A} \\
& \mathrm{AK}(6)=\mathrm{GCR}=\cos ^{-1}\left[\sin \beta_{\mathrm{o}} \sin \beta+\cos \beta_{0} \cos \beta \cos \left(\lambda-\lambda_{0}\right] 60 \mathrm{DEG}\right. \\
& \mathrm{AK}(7)=\mathrm{WDOT}=\mathrm{T}_{\text {ref }} \mathrm{XKM} / \mathrm{I}_{\mathrm{S}_{\text {ref }}}+\mathrm{WDOT}_{\text {inert }} \\
& A K(8)=V_{I}=\left[\left(R \omega \cos \beta+V_{R} \cos \gamma_{R} \cos \psi_{R}\right)^{2}+\sin ^{2} \gamma_{R}\right. \\
& \left.+\left(\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \cos \psi_{\mathrm{R}}\right)^{2}\right]^{1 / 2} \\
& \operatorname{AK}(9)=\gamma_{\mathrm{I}}=\sin ^{-1}\left[\mathrm{~V}_{\mathrm{R}} \sin \gamma_{\mathrm{R}} / \mathrm{V}_{\mathrm{I}}\right] \text { DEG } \\
& A K(10)=\psi_{\mathrm{I}}=\sin ^{-1}\left[V_{\mathrm{R}} \cos \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}} /\left(V_{\mathrm{I}} \sin \gamma_{\mathrm{I}}\right)\right] D E G \\
& \operatorname{AK}(11)=\alpha=\theta-\gamma_{\mathrm{R}} \\
& \operatorname{AK}(12)=\operatorname{TEMP}=\operatorname{TEM}\left(1+0.2 \mathrm{M}^{2}\right) \\
& \left.\begin{array}{l}
\mathrm{AK}(13)=\mathrm{V}_{\mathrm{A}} \\
\mathrm{AK}(14)=\mathrm{P} \\
\mathrm{AK}(15)=\rho \\
\mathrm{AK}(16)=\mathrm{TEM}
\end{array}\right\} \\
& \text { From ATMOS Routine } \\
& \operatorname{AK}(17)=W^{M}=4.448221615 \mathrm{XK} 1 \\
& \operatorname{AK}(18)=H^{M}=0.3048 \mathrm{X}(\mathrm{~K} 2) \\
& A K(19)=R P A=\left[(L+T \sin \alpha)^{2}+(D-T \cos \alpha)^{2}\right]^{1 / 2} G_{o} / W \\
& A K(20)=N=(L \cos \alpha+D \sin \alpha) / W \\
& \mathrm{AK}(21)=\mathrm{Q} \alpha=\mathrm{Q} \boldsymbol{\alpha} \\
& \operatorname{AK}(22)=G=\mu / R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{AK}(23)=\mathrm{R}^{\prime} \mathrm{H}+\mathrm{R}_{\mathrm{o}} \\
& \mathrm{AK}(24)=\mathrm{\Delta P}_{\mathrm{P}}=\Delta_{\mathrm{PJ}\left(\mathrm{P}_{\mathrm{o}} \mathrm{P}\right)^{1 / 2} \mathrm{~K}_{\mathrm{R}}\left(\mathrm{M}^{2}-1\right)^{1 / 8} / \mathrm{H}^{3 / 4}}^{\mathrm{AK}(25)=\mathrm{C}_{\mathrm{L}} \quad \text { From tables } 33 \text { and } 34} \\
& \mathrm{AK}(26)=\mathrm{C}_{\mathrm{D}} \quad \text { From tables } 23,33, \text { and } 34 \\
& \mathrm{AK}(27)=\mathrm{L} / \mathrm{D}=\mathrm{L} / \mathrm{D} \\
& \mathrm{AK}(28)=\mathrm{SFC}=3600 / \mathrm{I}_{\mathrm{S}_{\mathrm{ref}}} \\
& \mathrm{AK}(29)=\mathrm{V}_{\mathrm{R}}^{\mathrm{M}}=0.3048 \mathrm{X}(\mathrm{~K} 4) \\
& \mathrm{AK}(30)=\mathrm{T}^{\mathrm{M}}=4.448221615 \mathrm{AK}(1) \\
& \mathrm{AK}(31)=\mathrm{L}^{\mathrm{M}}=4.448221615 \mathrm{AK}(2) \\
& \mathrm{AK}(32)=\mathrm{D}^{\mathrm{M}}=4.448221615 \mathrm{AK}(3) \\
& \mathrm{AK}(33)=\mathrm{Q}^{\mathrm{M}}=47.8802589 \mathrm{AK}(4) \\
& \mathrm{AK}(34)=\mathrm{WDOT}^{\mathrm{M}}=0.45387006 \mathrm{AK}(7) \\
& \mathrm{AK}(35)=\mathrm{V}_{\mathrm{I}}^{\mathrm{M}}=0.3048 \mathrm{AK}(8) \\
& \mathrm{AK}(36)=\mathrm{Q}^{\mathrm{M}}=0.8356681645 \mathrm{AK}(21) \\
& \mathrm{AK}(37)=\Delta \mathrm{P}^{\mathrm{M}}=47.8802589 \mathrm{AK}(24) \\
& \mathrm{AK}(38)=\mathrm{SFC}
\end{aligned}
$$

VAR Array

Many variables, functions, and terms are placed in a COMMON array called VAR() because of convenience or frequent usage. This array allows for the addition of variables to the program without changing the COMMON block.
$\left.\begin{array}{ll}\operatorname{VAR}(1) & =\mathrm{T}_{\text {ref }} \\ \operatorname{VAR}(2) & =\mathrm{A}_{\mathrm{e}} \\ \operatorname{VAR}(3) & =\mathrm{I}_{\mathrm{S}_{\text {ref }}}\end{array}\right\} \quad$ From Tables 31 and 32

```
\(\operatorname{VAR}(4)=\partial \mathrm{V}_{\mathrm{a}} / \partial \mathrm{H}\)
\(\operatorname{VAR}(5)=\Delta P / \Delta H\)
\(\operatorname{VAR}(6)=\delta \rho / \partial \mathrm{H}\)
\(\operatorname{VAR}(7)=\partial \mathrm{TEM} / \partial \mathrm{H}\)
VAR (8) = Tnitial trajectory time (TSTART)
\(\operatorname{VAR}(9)=\Delta\) PJ \(\quad\) From Table 30
\(\operatorname{VAR}(10)\)
\(\left.\begin{array}{l}\operatorname{VAR}(11) \\ \operatorname{VAR}(12)\end{array}\right\} \quad\) Not defined; available for growth
\(\operatorname{VAR}(13)=\mathrm{C}_{\mathrm{D}_{\mathrm{f}}}=\left(\mathrm{H}-\mathrm{H}_{\text {ref }}\right) \partial \mathrm{C}_{\mathrm{D}_{\mathrm{f}}} / \partial \mathrm{H} \quad\) Where \(\mathrm{H}_{\text {ref }}\) and \(\partial \mathrm{C}_{\mathrm{D}_{\mathrm{f}}} / \partial \mathrm{H}\) are
                                    from Table 23
\(\operatorname{VAR}(14)=\partial \mathrm{C}_{\mathrm{D}} / \partial \mathrm{H}\)
\(\operatorname{VAR}(15)=\partial \mathrm{C}_{\mathrm{D}} / \partial \mathrm{V}_{\mathrm{R}}\)
\(\operatorname{VAR}(16)=\Delta \mathrm{C}_{\mathrm{D}} / \partial \alpha\)
\(\operatorname{VAR}(17)=\partial C_{D} / \partial \Lambda\)
\(\operatorname{VAR}(18)=\partial \mathrm{C}_{\mathrm{L}} / \partial \mathrm{H}\)
\(\operatorname{VAR}(19)=\partial \mathrm{C}_{\mathrm{L}} / \partial \mathrm{V}_{\mathrm{R}}\)
\(\operatorname{VAR}(20)=\partial C_{L} / \partial \alpha\)
\(\operatorname{VAR}(21)=\partial \mathrm{C}_{\mathrm{L}} / \partial \boldsymbol{\Lambda}\)
\(\operatorname{VAR}(22)=\left(\cos \beta \cos \gamma_{\mathrm{R}}+\sin \beta \sin \gamma_{\mathrm{R}} \sin \psi_{\mathrm{R}}\right)\)
\(\operatorname{VAR}(23)=\left(\cos \beta \sin \gamma_{R}-\sin \beta \cos \gamma_{R} \sin \psi_{R}\right)\)
\(\operatorname{VAR}(24)=\operatorname{Vcs}_{R}=\left[\left(\mathrm{R}_{\mathrm{o}} \omega \cos \beta-\mathrm{Vcs}_{\mathrm{I}} \cos \psi_{\mathrm{I}}\right)^{2}+\left(\mathrm{Vcs}_{\mathrm{I}} \sin \psi_{\mathrm{I}}\right)^{2}\right]^{1 / 2}\)
\(\operatorname{VAR}(25) \quad\) Not defined; available for growth
\(\operatorname{VAR}(26)=W_{f} \quad\) Last-stage final weight
\(\operatorname{VAR}(27)=\mathrm{W}_{\mathrm{I}} \quad\) Last-stage initial weight
\(\operatorname{VAR}(28)=\Delta \gamma_{\text {tilt }}\)
```

```
\(\operatorname{VAR}(29)=\gamma_{0}\)
\(\operatorname{VAR}(30)=\mathrm{MLSP}\) (Maximum last-stage propellant, input)
\(\operatorname{VAR}(31)=\partial \mathrm{T}_{\text {ref }} / \partial \mathrm{H}\)
\(\operatorname{VAR}(32)=\partial \mathrm{T}_{\text {ref }} / \partial \mathrm{V}_{\mathrm{R}}\)
\(\operatorname{VAR}(33)=\partial \mathrm{T}_{\mathrm{ref}} / \partial \alpha\)
\(\operatorname{VAR}(34)=\partial \mathrm{T}_{\text {ref }} / \partial \eta\) ( \(=0\) for current thrust options)
\(\operatorname{VAR}(35)=\partial \mathrm{WDOT} / \partial \mathrm{H}\)
\(\operatorname{VAR}(36)=\partial \mathrm{WDOT} / \partial \mathrm{V}_{\mathrm{R}}\)
\(\operatorname{VAR}(37)=\partial \mathrm{WDOT} / \partial \alpha\)
\(\operatorname{VAR}(38)=2 \mathrm{WDOT} / a \eta\)
\(\operatorname{VAR}(39)=\beta_{G}=\beta+\left(x \sin \psi_{R}+y \cos \psi_{R}\right) / R_{o}\)
\(\operatorname{VAR}(40)=\lambda_{G}=\lambda+\left(x \cos \psi_{R}-y \sin \psi_{R}\right) /\left(R_{o} \cos \beta\right)\)
\(\operatorname{VAR}(41)=\operatorname{PAPT}=\partial \alpha / \theta \theta=1\)
\(\operatorname{VAR}(42)=P A P G=\partial \alpha / \partial \gamma_{R}=-1\)
\(\operatorname{VAR}(43)=\operatorname{PAPF}=\boldsymbol{\partial} / \boldsymbol{\theta} \phi=0\)
```

Note: VAR(44) through VAR(50) not defined at present

CONST Array

A number of constants or functions of input constants are in the COMMON array identified as CONST(). Again the array allows adding constants to COMMON without modifying the common block.

$$
\begin{array}{ll}
\operatorname{CONST}(1) & =\sin \beta_{0} \\
\operatorname{CONST}(2) & =\cos \beta_{0} \\
\operatorname{CONST}(3) & =\cos \delta_{\mathrm{c} 1} \\
\operatorname{CONST}(4) & =\cos \delta_{\mathrm{c} 2} \\
\operatorname{CONST}(5) & =\cos \delta_{\mathrm{c} 3}
\end{array}
$$

$$
\begin{aligned}
& \operatorname{CONST}(6)=\cos \delta_{c 4} \\
& \operatorname{CONST}(7)=\cos \delta_{c 5} \\
& \operatorname{CONST}(8)=\cos \delta_{c 6} \\
& \operatorname{CONST}(9)=\cos \delta_{c 7} \\
& \operatorname{CONST}(10)=\cos \delta_{c 8} \\
& \operatorname{CONST}(11)=\cos \delta_{c} \\
& \text { CONST(12) }=\cos \delta \mathbf{c 1 0} \\
& \operatorname{CONST}(13)=\cos \delta_{c 11} \\
& \operatorname{CONST}(14)=\cos \delta_{\mathrm{c} 12} \\
& \operatorname{CONST}(15)=\cos \delta_{c 13} \\
& \operatorname{CONST}(16)=\cos \delta_{c 14} \\
& \text { CONST(17) }=6076.103 \\
& \operatorname{CONST}(18)=K_{R}=1.9 \\
& \operatorname{CONST}(19)=\mathrm{P}_{\mathrm{o}}=\text { (Sea level pressure) } \\
& \operatorname{CONST}(20)=R_{D}=\text { (Desired final radius) } \\
& \operatorname{CONST}(21)=\mathrm{V}_{\mathrm{cSI}}=\left[\mu / \mathrm{R}_{\mathrm{D}}\right]^{1 / 2} \\
& \text { CONST(22) }=\mathrm{V}_{\mathrm{Ao}}=\text { (Sea level speed of sound) } \\
& \text { CONST(23) }=\mathrm{L}=\text { (Boom PF reference length) }
\end{aligned}
$$

Words in COMMON or in calling sequences that are not defined by an array are listed below. These are primarily defined for convenience for the programmer.

```
PWPH = \delta\dot{W}/\delta H=VAR(35)
PWPV = o\dot{W}/\partial \mp@subsup{V}{R}{}=\operatorname{VAR(36)}
```

$$
\begin{aligned}
& \text { PWPA }=\partial \dot{\mathrm{W}} / \partial \alpha=\operatorname{VAR}(37) \\
& \text { PWPT }=\partial \dot{W} / \partial \eta=\operatorname{VAR}(38) \\
& \mathrm{PTPH}=\partial \mathrm{T} / \partial \mathrm{H}=\left(\eta \cdot \mathrm{XKT} \cdot \partial \mathrm{~T}_{\mathrm{ref}} / \partial \mathrm{H}-\mathrm{A}_{\mathrm{e}} \partial \mathrm{P} / \partial \mathrm{H} / 144\right) \cos \delta_{\mathrm{c}} \\
& \mathrm{PTPV}=\partial \mathrm{T} / \partial \mathrm{V}_{\mathrm{R}}=\eta \cdot \mathrm{XKT} \cdot \partial \mathrm{~T}_{\mathrm{ref}} / \partial \mathrm{V}_{\mathrm{R}} \cdot \cos \delta_{\mathrm{c}} \\
& \mathrm{PTPA}=\partial \mathrm{T} / \partial \alpha=\eta \cdot \mathrm{XKT} \cdot \partial \mathrm{~T}_{\mathrm{ref}} / \partial \alpha \cdot \cos \delta_{\mathrm{c}} \\
& \text { PTPT }=\partial T / \Delta \eta=X K T \cdot T_{\text {ref }} \cdot \cos \delta_{\mathrm{c}} \\
& \mathrm{PQSPH}=\partial Q / \partial H \cdot \mathrm{~S}_{\text {ref }}=\mathrm{PQPH} \cdot \mathrm{~S}_{\text {ref }} \\
& \operatorname{PQSPV}=\partial Q / \partial V_{R} \cdot S_{\text {ref }}=P Q P V \cdot S_{\text {ref }} \\
& \mathrm{PLPH}=\boldsymbol{\partial} / \partial \mathrm{H}=\partial \mathrm{C}_{\mathrm{L}} / \partial \mathrm{H} \cdot \mathrm{QS}+\mathrm{C}_{\mathrm{L}} \cdot \mathrm{PQSPH} \\
& \mathrm{PLPV}=\partial \mathrm{L} / \partial \mathrm{V}_{\mathrm{R}}=\partial \mathrm{C}_{\mathrm{L}} / \partial \mathrm{V}_{\mathrm{R}} \cdot \mathrm{QS}+\mathrm{C}_{\mathrm{L}} \cdot \mathrm{PQSPV} \\
& \mathrm{PLPA}=\partial \mathrm{L} / \partial \alpha=\partial \mathrm{C}_{\mathrm{L}} / \partial \alpha \cdot \mathrm{QS} \\
& P L P S=\partial L / \partial \Lambda=\partial C_{L} / \partial \Lambda \cdot Q S \\
& \mathrm{PDPH}=\partial \mathrm{D} / \partial \mathrm{H}=\partial \mathrm{C}_{\mathrm{D}} / \partial \mathrm{H} \cdot \mathrm{QS}+\mathrm{C}_{\mathrm{D}} \cdot \mathrm{PQSPH} \\
& \mathrm{PDPV}=\partial \mathrm{D} / \partial \mathrm{V}_{\mathrm{R}}=\partial \mathrm{C}_{\mathrm{D}} / \partial \mathrm{V}_{\mathrm{R}} \cdot \mathrm{QS}+\mathrm{C}_{\mathrm{D}} \cdot \mathrm{PQSPH} \\
& \mathrm{PDPA}=\partial \mathrm{D} / \partial \alpha=\partial \mathrm{C}_{\mathrm{D}} / \partial \alpha \cdot \mathrm{QS} \\
& \operatorname{PDPS}=\partial \mathrm{D} / \partial \Lambda=\partial \mathrm{C}_{\mathrm{D}} / \partial \Lambda \cdot \mathrm{QS} \\
& \mathrm{PMPH}=(\partial \mathrm{M} / \partial \mathrm{H}) \mathrm{V}_{\mathrm{R}}=-\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{A}}^{2} \\
& \text { PMPV }=\left(a \mathrm{M} / \partial \mathrm{V}_{\mathrm{R}}\right)_{\mathrm{H}}=1 / \mathrm{V}_{\mathrm{A}} \\
& \mathrm{PQPH}=(\partial Q / \partial H)_{\mathrm{V}_{\mathrm{R}}}=0.5 \mathrm{~V}_{\mathrm{R}}^{2} \cdot \partial \mathrm{P} / \partial \mathrm{H} \\
& \mathrm{PQPV}=(\partial Q / \partial \mathrm{V})_{\mathrm{H}}=\rho \mathrm{V}_{\mathrm{R}} \\
& \text { RO } \quad=R_{o}=\text { Earth Radius }=20,902,992 \mathrm{ft} \\
& \text { DEG = Degrees/Radian } \\
& \text { RAD }=1 / \text { DEG } \\
& \text { CI1 }=\cos \theta \\
& \text { SI1 }=\sin \theta \\
& \mathrm{CI} 2=\cos \varphi
\end{aligned}
$$

CK6	$=\cos \psi_{\mathrm{R}}$
SI2	$=\sin \varphi^{\prime}$
CK3	$=\cos \gamma_{\mathrm{R}}$
SK3	$=\sin \gamma_{\mathrm{R}}$
CK5	$=\cos \beta$
SK5	$=\sin \beta$
SK6	$=\sin \psi_{\mathrm{R}}$
CAK11	$=\cos \alpha$
SAKll	$=\sin \alpha$
XK1	$=\mathrm{W}$
UI1	$=\theta$
UI2	$=\varphi$
UI3	$=\eta$
UI4	$=\Lambda$
AK11	$=\alpha$
GO	$=G_{o}=$ Mass-To-Weight Conversion, 32.174
GR	$=\mu=$ Gravitional Constant, 14.081718×10^{15}
OMEGA	$=\omega=$ Earth Rotation Rate, $0.72921152 \times 10^{-4}$
PGPH	$=\partial \mathrm{G} / \partial \mathrm{H}=-2 \mathrm{G} / \mathrm{R}$

Internal Program Indicators

The following indicators (L array) are used for controlling internal operations in the program.

L(1) Number of integration points stored during integration of last valid trajectory (Set in subroutine LAMBDA). Used in the recovery of the control variable history.

L(2) Subroutine C \varnothing NTR lookup memory index during forward integration and subroutine DVAL 2 lookup memory index during backward integration.

L(3) Maximum travel indicator
$=0$ No constraints traveled more than maximum allowable.
$=1$ One or more of the constraints traveled more than maximum allowable.

L(4) Minimum DUSQ indicator
$=0$ DUSQ $>$ minimum
= 1 DUSQ = minimum
L(5) Subroutine DVAL2 lookup control
$=0$ lookup if T (time) not equal to previous time.
$=1$ lookup
L(6) Current iteration phase
$=-1$ valid step, nominal only (set when NARBY $=0$)
$=0$ trial
$=1$ valid step
$=2$ reverse integration
$=10$ end of run
L(7) Not used
L(8) Forward trajectory last integration step indicator
$=0$ Intermediate integration step
= 1 Last integration step
$\mathrm{L}(9) \quad$ Plot indicator
$=0$ Don't plot current iteration
$=1$ Plot current iteration
$\mathrm{L}(10)$ Gamma tilt variable initial condition indicator
$=0$ Gamma tilt not selected as variable initial condition
$=1$ Gamma tilt selected as variable initial condition
L(11) Current number of records of partial derivatives remaining on KPAR (partial) unit during reverse integration.

L(12) Half-step indicator
$=0$ Not a half step
$=1$ Half step - do not print
$\mathrm{L}(13)$ Iteration phase indicator
$=0$ Next forward trajectory will be a valid step
$=1$ Next forward trajectory will be a trial
Secondary use

Valid step rejected indicator
$=0$ Valid step not rejected
$=1$ Valid step rejected
L(14) Numerical partial check indicator
(Incremented by 1 every stored integration step and reset to 0 whenever numerical partials are computed)
$=$ NC(12) Compute numerical partials
\neq NC (12) Don't compute numerical partials

APPENDIX C

PROGRAM CONTROL LOGIC

The following tests made after different phases of an iteration are in no way connected with the steepest-ascent logic. They are present only to ensure the convergence to a solution in a reasonable length of time. All of the tests are strictly empirical and all have at some time or another played an important part in the convergence of particular cases. Experience is the only answer that can be given to the question as to the need of some of the tests. The control logic as presented in its current form is by no means able to solve all problems with which it is confronted. The control logic has, however, successfully caused the convergence of a great number of cases ranging from high-speed reentry vehicles to supersonic transports, thus showing its flexibility and capability.

Accept or reject valid step tests. - Majority vote test: The constraints outside their respective tolerance bands on the previous valid step are examined with respect to their travel on this valid step. The constraints with adverse travel are assigned a value of -1 ; the constraints with favorable travel are assigned a value of +1 . The algebraic sum of these assigned values is then taken. If the value of DUSQ is large enough to allow optimization, the performance function is treated in a similar way and added to the sum. The direction of change in performance is not meaningful when the program is not optimizing and therefore is not included in the majority vote. The change in performance is just the result of the constraint motion in this case. If the majority vote (algebraic sum) is negative, the valid step just calculated will be rejected and another valid step will later be attempted. If the majority vote is either zero or positive, the valid step will normally be accepted and another iteration will be run if desired. It should be noted that the majority vote is neither computed nor tested after the first valid step (nominal or first trajectory of a restart) of a run.

Excessive adverse performance test: An allowable adverse change in performance is computed as the larger of ten percent of the value of performance on the previous valid step, and five percent of the greatest value of performance attained on any previous trial or valid step (including the current valid step). If the change in performance is in the wrong direction and it is greater than the allowable adverse change, a step-size coefficient based on adverse performance is computed and the valid step is rejected. The nominal or first trajectory of a restart cannot be rejected because of an adverse performance change.

It should be noted that, in the above two tests, the valid step will not be rejected if the decision to attempt the valid step was made because too many trials were made or DUSQ is at its minimum value. A valid step is run after a specified maximum number of trials or when DUSQ is set to the minimum allowable value to obtain a new set of influence coefficients, and is run under the assumption that many of the constraints and possibly performance will travel in an unfavorable direction.

Abort test after a valid step. - Exit on too many valid step rejections: Under certain conditions the program control logic cannot make a successful valid step and will continue to reject consecutive valid steps. If the number of trials taken before the attempted valid step plus the number of rejected valid steps ever exceeds 10 , the case being run is aborted with an appropriate message.

Abort tests following reverse integration. - Matrix inyersion: If the inverse of $I_{\psi \psi}$ matrix cannot be accomplished because of overflow during matrix inversion or the matrix is singular, an appropriate message is printed and the run is aborted.

Check for optimum: If all of the constraints are within their respective input tolerance bands, the change in performance is less than or equal to 10^{-6} times the value of performance on the previous valid step, and the denominator of the first Lagrange multiplier is less than or equal to one ten thousandth of $\mathrm{I}_{\varphi \varphi}$, the case is terminated and a message stating that the last valid step is an optimum is printed.

Detect convergence failure: If all of the constraint changes are less than their respective input tolerances and the change in performance is less than or equal to 10^{-6} times the value of performance on the previous valid step, the case is terminated and a message stating convergence failure is printed. This indicates that the constraints are not within the prescribed band and that improvement in performance and constraints cannot be made satisfactorily.

Gradient of φ is too negative test: If the denominator of the first Lagrange multiplier plus ten percent of $\mathrm{I}_{\varphi \varphi}$ is less than zero, the case is terminated and a message stating that the gradient of $\varphi_{i s}$ too negative to continue is printed.

Tests following a trial causing another trial to be made. - Majority vote test: This test is similar to the majority vote test previously mentioned, except in two areas. The constraints being examined are the ones outside of their respective temporary tolerance bands on the current valid step and if all of the constraints being counted improved, an indicator is set. If the majority vote is negative, another trial will almost always be made (only other test examined after a negative majority vote is the bounce test, which is described later). A zero or positive majority vote will cause the step-sizc cocfficients to be calculated.

Excessive adverse performance test: This test is identical to the adverse performance test previously described. If there is excessive adverse performance on the current trial, another trial is almost always run. (Only other test examined after excessive adverse performance is detected is the bounce test.)

Tests after a trial that will cause a valid step to be run. - End point search: If the step-size coefficient equals two and the control logic is in an end point search mode (i.e., $\mathrm{dU}^{2}<\mathrm{d} \bar{\beta}^{\prime} \mathrm{I}_{\psi \psi}{ }^{-1} \mathrm{~d} \bar{\beta}$), the current trial will be accepted and a valid step will be run. An appropriate message will also be printed.

Penalty function test: The penalty functions are examined (if any). If one or more have been violated after having no value for at least one iteration, a valid step is run - provided that the step-size coefficient is greater than or equal to one. An appropriate message is printed.

Performance test (no constraints): If at least one trial has already been run and the case has no constraints, the performance change is examined. If the performance change is favorable and the step-size coefficient is equal to one half, the current trial is accepted and a valid step is run. An appropriate message is printed.

All constraints favorable test: If all of the constraints counted in the majority vote test improved, the step-size coefficient was not reduced due to a constraint change that was larger than its maximum permissible travel, and the step size (DUSQ) is reduced over the previous step size on the last valid step, then the current trial is accepted and a valid step is run. An appropriate message is printed.

Bounce test: If the trend after a set of trials following a reverse integration is either a monotonically increasing or decreasing step size, and on the current trial, the trend is reversed, the last consistent trial is accepted and a valid step is run. An appropriate message is printed.

Too many trials: A valid step will be run if the following conditions are met: six or more trials have been run since the last accepted valid step, the changes in constraints being asked for are not too great ($\mathrm{d} \bar{\psi}<\mathrm{d} \bar{\psi}$ max), and the control logic is not in an end point search ($\left.d U^{2}>d \bar{\beta}^{\prime} I_{\psi \psi}{ }^{-1} d \bar{\beta}\right)$. An appropriate message is printed.

Too many trials: This test has no other conditions on it except that if cight trials have been run, the current trial is accepted and a valid step is run.

The above two tests (too many trials) are not satisfied under normal running conditions. The program normally runs one or two trials before making a valid step.

Factors affecting the selection of step size coefficient. - The step-size coefficient calculation will greatly affect the decision of the control logic in deciding to run another trial or valid step. This calculation is the dominant factor in deciding between a trial and a valid step.

A step-size coefficient based on linearity is computed for each constraint and performance. The maximum step-size coefficients are then calculated for each constraint using its respective maximum permissible constraint change in the parabolic approximation. The largest step-size coefficient based on constraint and performance linearities is then selected. The control logic is then said to be controlling with the function corresponding to the largest step-size coefficient. The largest
step-size coefficient is compared with the maximum step-size coefficients of the constraints outside their respective temporary tolerance bands. If the smallest value of the maximum step-size coefficients being examined is less than the largest step-size coefficient, then it is chosen as the new step-size coefficient. If at this point an indicator shows that the step-size coefficient calculation has not been repeated (explained later) and the step-size coefficient is less than 0.5 , the control logic will return from this calculation with the step-size coefficient set equal to 0.5 . This will cause the running of another trial. If the above conditions are not met, tests are made to determine if the step-size calculation should be repeated. Conditions under which the calculations can be repeated are: the logic is controlling with a constraint that is within its temporary tolerance band, and the maximum step-size coefficient corresponding to this constraint is less than the current step-size coefficient.

The maximum permissible travel of the controlling constraint is checked to ensure that it is not greater than its error. If the travel is less than the error, the logic returns from the calculation without recalculating the step-size coefficient. If the travel, however, is greater than the error, the step-size calculation is repeated. Repeating the calculation means that the next largest step-size coefficient is chosen (based on linearities) and the logic is then said to be controlling with this function (another constraint or performance). The logic then follows the same path as described above.

It is possible to repeat the calculation many times before choosing a final step-size coefficient.

The final step-size coefficient is then compared with the limits 0.5 and 2 . If the step-size coefficient lies outside the limits, it is set to the closest limit. A final step-size coefficient of 0.5 or 2 will probably cause the running of another trial, whereas a step-size coefficient within the limits will cause a valid step to be attempted.

Minimum allowable value of DUSQ. - The value of DUSQ required for $\mathrm{d} \bar{\psi}$ is calculated after a valid step as $\mathrm{d} \bar{\psi}^{1} \times \mathrm{I}_{\psi \psi}{ }^{-1} \times \mathrm{d} \bar{\psi} .0 .25$ percent of this value is the minimum allowable value of DUSQ. After a trial, reverse integration, or rejected valid step, the value of DUSQ is compared with the minimum allowable. If the current value of DUSQ is less than the minimum allowable, DUSQ is reset to the minimum allowable, recalculations are made with the new value of DUSQ, and a valid step is run. The valid step under this mode of operation cannot be rejected. It should be noted that no trials are run while the program is in the minimum DUSQ mode.

A need for a minimum allowable DUSQ resulted from a number of difficult cases, which reduced the value of DUSQ to such a point that any changes in constraint or performance values were due strictly to computer round-off error and noise. Control logic predictions under these conditions were not reliable and therefore caused an even further reduction in the value of DUSQ. It is obvious
that once this mode of operation is entered it is extremely difficult for the program to break out of it. The minimum DUSQ concept successfully bypasses this problem, yet causes another. It is possible for the program to cause the divergence of a case when it is in the minimum DUSQ mode because the control logic is being forced to use a value of DUSQ greater than it would otherwise choose. Experience has shown that difficult cases will run in the minimum DUSQ mode for a number of iterations and break out of it and run in the normal program mode. Examining these cases in detail has shown that a very slight amount of divergence has occurred during the iterations run in the minimum DUSQ mode. This occurred at a point when the program found it extremely difficult to shape the flight path properly. Once this was overcome the program stepped out of this mode and successfully optimized.

Minimum DUSQ for optimization. - The value of the minimum DUSQ for optimization is computed as (2.1-FXTRA1)*T1 where FXTRA1 is the nondimensional amount of the constraint error to be eliminated in this iteration (increased by five percent every iteration) and T1 is the amount of DUSQ required to meet the current $\boldsymbol{\Delta} \boldsymbol{\beta}$.

After a trial, reverse integration, or rejected valid step, the current value of DUSQ is compared with the minimum DUSQ for optimization. If the current value is less than the minimum value, the value of DUSQ is reset to this minimum value and recalculations are made with the new value of DUSQ. The control logic continues with no other change. At the start of a case the minimum DUSQ required for optimization is more than twice as much as that needed to meet the amount of constraint error being eliminated. This essentially forces the program to optimize from the beginning of a run. Without this logic, too many cases used the entire DUSQ to meet the constraints and thus never optimized. Once the constraints were met, the program would then turn to the problem of optimization, which resulted in the convergence to a local optimum. The current logic will cause the program to optimize first and then meet the constraints.

Scaling of $\mathrm{d} \overline{\boldsymbol{\beta}}$. - If the denominator of the first Lagrange multiplier minus $10^{-8} \times \mathrm{I}_{\varphi} \varphi^{\text {is }}$ less than or equal to zero (1st test) and the numerator of the first Lagrange multiplier is less than zero (2nd test), DBETA ($\mathrm{d} \bar{\beta}$), T1, DELX, XLAMDX, and DPSIP are scaled by the factor (DUSQ/T1) ${ }^{1 / 2}$. If the first test above is satisfied, the program is said to be in the end point search mode. If the second test above is not satisfied, scaling does not occur and DUSQ is set equal to T1. If the first test above is not satisfied and the numerator of the first Lagrange multiplier is negative, scaling does occur and the program is said to be asking for the constraints too quickly. The program will also operate in the end point search mode when the user selects the boundary value mode.

Nondimensional ψ change. - The nondimensional amount of constraint error to be eliminated for the new iteration is computed after every valid step. The amount of constraint error asked for is normally increased by five percent each iteration. If, however, the program is not in its optimization mode and a
constraint is inside its tolerance band, its respective value of nondimensional ψ change is not increased every iteration and is set to 10 percent. This causes the program to pay more attention to constraints outside their respective tolerance bands when in an end point search mode, minimum DUSQ mode, etc. The nondimensional ψ change for a constraint is reset once it is outside its tolerance band. It should be noted that, only after a minimum of 20 iterations, will a full 100 percent of the constraint error be asked for.

Temporary tolerance bands. - Initial values of the temporary bands are equal to 10 times the final tolerance bands (input by the user). The constraints are examined after a valid step to check if they are inside their respective temporary tolerance bands. If all of the constraints are inside their respective temporary tolerance bands, all of the tolerances are reduced to one half their value. The only exception to this is that a temporary tolerance band cannot be less than its final input tolerance band.

Nondimensional permissible constraint change. - Two nondimensional permissible constraint changes are computed after a valid step for each constraint. One is for motion toward the desired constraint value and one is away from the desired constraint value. The values are a function of the nondimensional constraint error asked for (CPSI). As successive iterations are run, the nondimensional permissible constraint changes are decreased. The two formulas are:

$$
\begin{aligned}
& \text { PSIFWD (forward motion) }=5.0-3.0 \times \mathrm{CPSI} \\
& \text { PSIBWD (backward motion) }=1.05-\mathrm{CPSI}
\end{aligned}
$$

Tolerance band indicators. - The number of consecutive iterations that a constraint has been outside its respective tolerance band is accumulated and stored in the computer word INDSIC. This value is reset to zero whenever a constraint is inside its tolerance band.

