16 research outputs found

    Recognition of two distinct elements in the RNA substrate by the RNA-binding domain of the T. thermophilus DEAD box helicase Hera

    Get PDF
    DEAD box helicases catalyze the ATP-dependent destabilization of RNA duplexes. Whereas duplex separation is mediated by the helicase core shared by all members of the family, flanking domains often contribute to binding of the RNA substrate. The Thermus thermophilus DEAD-box helicase Hera (for ā€œheat-resistant RNA-binding ATPaseā€) contains a C-terminal RNA-binding domain (RBD). We have analyzed RNA binding to the Hera RBD by a combination of mutational analyses, nuclear magnetic resonance and X-ray crystallography, and identify residues on helix Ī±1 and the C-terminus as the main determinants for high-affinity RNA binding. A crystal structure of the RBD in complex with a single-stranded RNA resolves the RNAā€“protein interactions in the RBD core region around helix Ī±1. Differences in RNA binding to the Hera RBD and to the structurally similar RBD of the Bacillus subtilis DEAD box helicase YxiN illustrate the versatility of RNA recognition motifs as RNA-binding platforms. Comparison of chemical shift perturbation patterns elicited by different RNAs, and the effect of sequence changes in the RNA on binding and unwinding show that the RBD binds a single-stranded RNA region at the core and simultaneously contacts double-stranded RNA through its C-terminal tail. The helicase core then unwinds an adjacent RNA duplex. Overall, the mode of RNA binding by Hera is consistent with a possible function as a general RNA chaperone

    Recognition of two distinct elements in the RNA substrate by the RNA-binding domain of the T. thermophilus DEAD box helicase Hera

    Get PDF
    DEAD box helicases catalyze the ATP-dependent destabilization of RNA duplexes. Whereas duplex separation is mediated by the helicase core shared by all members of the family, flanking domains often contribute to binding of the RNA substrate. The Thermus thermophilus DEAD-box helicase Hera (for "heat-resistant RNA-binding ATPaseā€) contains a C-terminal RNA-binding domain (RBD). We have analyzed RNA binding to the Hera RBD by a combination of mutational analyses, nuclear magnetic resonance and X-ray crystallography, and identify residues on helix Ī±1 and the C-terminus as the main determinants for high-affinity RNA binding. A crystal structure of the RBD in complex with a single-stranded RNA resolves the RNA-protein interactions in the RBD core region around helix Ī±1. Differences in RNA binding to the Hera RBD and to the structurally similar RBD of the Bacillus subtilis DEAD box helicase YxiN illustrate the versatility of RNA recognition motifs as RNA-binding platforms. Comparison of chemical shift perturbation patterns elicited by different RNAs, and the effect of sequence changes in the RNA on binding and unwinding show that the RBD binds a single-stranded RNA region at the core and simultaneously contacts double-stranded RNA through its C-terminal tail. The helicase core then unwinds an adjacent RNA duplex. Overall, the mode of RNA binding by Hera is consistent with a possible function as a general RNA chaperon

    Nickel quercetinase, a ā€œpromiscuousā€ metalloenzyme: metal incorporation and metal ligand substitution studies

    Get PDF
    Background: Quercetinases are metal-dependent dioxygenases of the cupin superfamily. While fungal quercetinases are copper proteins, recombinant Streptomyces quercetinase (QueD) was previously described to be capable of incorporating Ni2+ and some other divalent metal ions. This raises the questions of which factors determine metal selection, and which metal ion is physiologically relevant. Results: Metal occupancies of heterologously produced QueD proteins followed the order Niā€‰>ā€‰Coā€‰>ā€‰Feā€‰>ā€‰Mn. Iron, in contrast to the other metals, does not support catalytic activity. QueD isolated from the wild-type Streptomyces sp. strain FLA contained mainly nickel and zinc. In vitro synthesis of QueD in a cell-free transcription-translation system yielded catalytically active protein when Ni2+ was present, and comparison of the circular dichroism spectra of in vitro produced proteins suggested that Ni2+ ions support correct folding. Replacement of individual amino acids of the 3His/1Glu metal binding motif by alanine drastically reduced or abolished quercetinase activity and affected its structural integrity. Only substitution of the glutamate ligand (E76) by histidine resulted in Ni- and Co-QueD variants that retained the native fold and showed residual catalytic activity. Conclusions: Heterologous formation of catalytically active, native QueD holoenzyme requires Ni2+, Co2+ or Mn2+, i.e., metal ions that prefer an octahedral coordination geometry, and an intact 3His/1Glu motif or a 4His environment of the metal. The observed metal occupancies suggest that metal incorporation into QueD is governed by the relative stability of the resulting metal complexes, rather than by metal abundance. Ni2+ most likely is the physiologically relevant cofactor of QueD of Streptomyces sp. FLA.<br
    corecore