148 research outputs found

    IRF8-Dependent Type I Conventional Dendritic Cells (cDC1s) Control Post-Ischemic Inflammation and Mildly Protect Against Post-Ischemic Acute Kidney Injury and Disease

    Get PDF
    Post-ischemic acute kidney injury and disease (AKI/AKD) involve acute tubular necrosis and irreversible nephron loss. Mononuclear phagocytes including conventional dendritic cells (cDCs) are present during different phases of injury and repair, but the functional contribution of this subset remains controversial. Transcription factor interferon regulatory factor 8 (IRF8) is required for the development of type I conventional dendritic cells (cDC1s) lineage and helps to define distinct cDC1 subsets. We identified one distinct subset among mononuclear phagocyte subsets according to the expression patterns of CD11b and CD11c in healthy kidney and lymphoid organs, of which IRF8 was significantly expressed in the CD11blowCD11chigh subset that mainly comprised cDC1s. Next, we applied a Irf8-deficient mouse line (Irf8fl/flClec9acre mice) to specifically target Clec9a-expressing cDC1s in vivo. During post-ischemic AKI/AKD, these mice lacked cDC1s in the kidney without affecting cDC2s. The absence of cDC1s mildly aggravated the loss of living primary tubule and decline of kidney function, which was associated with decreased anti-inflammatory Tregs-related immune responses, but increased T helper type 1 (TH1)-related and pro-inflammatory cytokines, infiltrating neutrophils and acute tubular cell death, while we also observed a reduced number of cytotoxic CD8+ T cells in the kidney when cDC1s were absent. Together, our data show that IRF8 is indispensable for kidney cDC1s. Kidney cDC1s mildly protect against post-ischemic AKI/AKD, probably via suppressing tissue inflammation and damage, which implies an immunoregulatory role for cDC1s

    Impact of tumor localization and molecular subtypes on the prognostic and predictive significance of p53 expression in gastric cancer

    Get PDF
    We investigated the prognostic and predictive impact of p53 expression for gastric cancer (GC) patients treated without or with preoperative chemotherapy (CTx) and its relationship with specific molecular GC subtypes. Specimens from 694 GC patients (562 surgical resection specimens without or after CTx, 132 biopsies before CTx) were analyzed by p53 immunohistochemistry. High (H) and low (L) microsatellite instability (MSI) and Epstein–Barr virus positivity were determined previously. Our results show that aberrant p53 expression was a negative prognostic factor in uni- and multivariable analysis in the resection specimens cohort (each p < 0.01). Subgroup analysis showed the strongest prognostic effect for patients with distally located tumors or no CTx treatment. In the biopsy cohort before CTx, p53 did not predict response or survival. p53 expression was significantly different among the molecular subtypes in surgical resection and bioptic specimens with strong association of altered p53 with MSI-L. Patients with MSI-H and aberrant p53 showed the worst survival in the biopsy cohort. In conclusion, the prognostic impact of p53 in GC differs according to tumor localization and CTx. Altered p53 is characteristic for MSI-L, and the p53 status in biopsies before CTx delineates MSI-H subtypes with inverse prognostic impact

    Elevated microsatellite instability at selected tetranucleotide (EMAST) repeats in gastric cancer: a distinct microsatellite instability type with potential clinical impact?

    Get PDF
    We investigated the clinical impact of elevated microsatellite instability at selected tetranucleotide (EMAST) repeats in the context of neoadjuvant chemotherapy (CTx) in gastric/gastro-oesophageal adenocarcinomas. We analysed 583 resected tumours (272 without and 311 after CTx) and 142 tumour biopsies before CTx. If at least two or three of the five tetranucleotide repeat markers tested showed instability, the tumours were defined as EMAST (2+) or EMAST (3+), respectively. Expression of mismatch repair proteins including MSH3 was analysed using immunohistochemistry. Microsatellite instability (MSI) and Epstein-Barr virus (EBV) positivity were determined using standard assays. EMAST (2+) and (3+) were detected in 17.8 and 11.5% of the tumours, respectively. The frequency of EMAST (2+) or (3+) in MSI-high (MSI-H) tumours was 96.2 or 92.5%, respectively, demonstrating a high overlap with this molecular subtype, and the association of EMAST and MSI status was significant (each overall p < 0.001). EMAST (2+ or 3+) alone in MSI-H and EBV-negative tumours demonstrated only a statistically significant association of EMAST (2+) positivity and negative lymph node status (42.3% in EMAST (2+) and 28.8% in EMAST negative, p = 0.045). EMAST alone by neither definition was significantly associated with overall survival (OS) of the patients. The median OS for EMAST (2+) patients was 40.0 months (95% confidence interval [CI] 16.4-63.6) compared with 38.7 months (95% CI 26.3-51.1) for the EMAST-negative group (p = 0.880). The median OS for EMAST (3+) patients was 46.7 months (95% CI 18.2-75.2) and 38.7 months (95% CI 26.2-51.2) for the negative group (p = 0.879). No statistically significant association with response to neoadjuvant CTx was observed (p = 0.992 and p = 0.433 for EMAST (2+) and (3+), respectively). In conclusion, our results demonstrate a nearly complete intersection between MSI-H and EMAST and they indicate that EMAST alone is not a distinct instability type associated with noticeable clinico-pathological characteristics of gastric carcinoma patients

    Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease

    Get PDF
    Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)beta IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGF beta-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and a-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = -8.9 vs. m = -14.5 mu l/min/100 g body weight (BW)/day, Delta = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 mu l/min/100 g BW, Delta = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Delta = 38.5%). Delayed onset of anti-TGF beta IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGF beta IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD

    Ring1b-dependent epigenetic remodelling is an essential prerequisite for pancreatic carcinogenesis

    Get PDF
    BACKGROUND AND AIMS Besides well-defined genetic alterations, the dedifferentiation of mature acinar cells is an important prerequisite for pancreatic carcinogenesis. Acinar-specific genes controlling cell homeostasis are extensively downregulated during cancer development; however, the underlying mechanisms are poorly understood. Now, we devised a novel in vitro strategy to determine genome-wide dynamics in the epigenetic landscape in pancreatic carcinogenesis. DESIGN With our in vitro carcinogenic sequence, we performed global gene expression analysis and ChIP sequencing for the histone modifications H3K4me3, H3K27me3 and H2AK119ub. Followed by a comprehensive bioinformatic approach, we captured gene clusters with extensive epigenetic and transcriptional remodelling. Relevance of Ring1b-catalysed H2AK119ub in acinar cell reprogramming was studied in an inducible Ring1b knockout mouse model. CRISPR/Cas9-mediated Ring1b ablation as well as drug-induced Ring1b inhibition were functionally characterised in pancreatic cancer cells. RESULTS The epigenome is vigorously modified during pancreatic carcinogenesis, defining cellular identity. Particularly, regulatory acinar cell transcription factors are epigenetically silenced by the Ring1b-catalysed histone modification H2AK119ub in acinar-to-ductal metaplasia and pancreatic cancer cells. Ring1b knockout mice showed greatly impaired acinar cell dedifferentiation and pancreatic tumour formation due to a retained expression of acinar differentiation genes. Depletion or drug-induced inhibition of Ring1b promoted tumour cell reprogramming towards a less aggressive phenotype. CONCLUSIONS Our data provide substantial evidence that the epigenetic silencing of acinar cell fate genes is a mandatory event in the development and progression of pancreatic cancer. Targeting the epigenetic repressor Ring1b could offer new therapeutic options

    Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice

    Get PDF
    Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research

    Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice.

    Get PDF
    Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research

    Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes

    Get PDF
    [Background & Aims]: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. [Methods]: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. [Results]: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. [Conclusions]: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.This work was supported by the Deutsche Forschungsgemeinschaft (grants AL 1174/4-1, AL1174/4-2, and Collaborative Research Center 1321 “Modeling and Targeting Pancreatic Cancer” to Hana Algül; SFB824 Z2 to Katja Steiger), the Deutsche Krebshilfe (grant 111646 to Hana Algül), a Ramon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (to Bruno Sainz Jr), a Coordinated Grant from Fundación Asociación Española Contra el Cáncer (GC16173694BARB to Bruno Sainz Jr), funding from The Fero Foundation (to Bruno Sainz Jr), and a Proyecto de Investigacion de Salud, ISCIII, Spain (no. PI18/00757 to Bruno Sainz Jr). Jiaoyu Ai is supported by the “China Scholarship Council” grant program

    A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity

    Get PDF
    Abstract: Cancer cells upregulate anabolic processes to maintain high rates of cellular turnover. Limiting the supply of macromolecular precursors by targeting enzymes involved in biosynthesis is a promising strategy in cancer therapy. Several tumors excessively metabolize glutamine to generate precursors for nonessential amino acids, nucleotides, and lipids, in a process called glutaminolysis. Here we show that pharmacological inhibition of glutaminase (GLS) eradicates glioblastoma stem-like cells (GSCs), a small cell subpopulation in glioblastoma (GBM) responsible for therapy resistance and tumor recurrence. Treatment with small molecule inhibitors compound 968 and CB839 effectively diminished cell growth and in vitro clonogenicity of GSC neurosphere cultures. However, our pharmaco-metabolic studies revealed that only CB839 inhibited GLS enzymatic activity thereby limiting the influx of glutamine derivates into the TCA cycle. Nevertheless, the effects of both inhibitors were highly GLS specific, since treatment sensitivity markedly correlated with GLS protein expression. Strikingly, we found GLS overexpressed in in vitro GSC models as compared with neural stem cells (NSC). Moreover, our study demonstrates the usefulness of in vitro pharmaco-metabolomics to score target specificity of compounds thereby refining drug development and risk assessment
    corecore