27 research outputs found
Genome-Wide Discovery of Somatic Regulatory Variants in Diffuse Large B-Cell Lymphoma
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics. 
Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas
We conducted a phase I/II multicenter trial using 6 cycles of brentuximab vedotin (BV) in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone (R-CHP) for treatment of patients with CD30-positive (+) B-cell lymphomas. Thirty-one patients were evaluable for toxicity and 29 for efficacy including 22 with primary mediastinal B-cell lymphoma (PMBCL), 5 with diffuse large B-cell lymphoma (DLBCL), and 2 with gray zone lymphoma (GZL). There were no treatment-related deaths; 32% of patients had non-hematological grade 3/4 toxicities. The overall response rate was 100% (95% CI: 88-100) with 86% (95% CI: 68-96) of patients achieving complete response at the end of systemic treatment. Consolidative radiation following end of treatment response assessment was permissible and used in 52% of all patients including 59% of patients with PMBCL. With a median follow-up of 30 months, the 2-year progression-free survival (PFS) and overall survival (OS) were 85% (95% CI: 66-94) and 100%, respectively. In the PMBCL cohort, 2-year PFS was 86% (95% CI: 62-95). In summary, BV-R-CHP with or without consolidative radiation is a feasible and active frontline regimen for CD30+ B-cell lymphomas (NCT01994850)
Cost-Effectiveness of Molecularly Guided Treatment in Diffuse Large B-Cell Lymphoma (DLBCL) in Patients under 60
Background: Classifying diffuse large B-cell lymphoma (DLBCL) into cell-of-origin (COO) subtypes could allow for personalized cancer control. Evidence suggests that subtype-guided treatment may be beneficial in the activated B-cell (ABC) subtype of DLBCL, among patients under the age of 60. Methods: We estimated the cost-effectiveness of age- and subtype-specific treatment guided by gene expression profiling (GEP). A probabilistic Markov model examined costs and quality-adjusted life-years gained (QALY) accrued to patients under GEP-classified COO treatment over a 10-year time horizon. The model was calibrated to evaluate the adoption of ibrutinib as a first line treatment among patients under 60 years with ABC subtype DLBCL. The primary data source for efficacy was derived from published estimates of the PHOENIX trial. These inputs were supplemented with patient-level, real-world data from BC Cancer, which provides comprehensive cancer services to the population of British Columbia. Results: We found the cost-effectiveness of GEP-guided treatment vs. standard care was 50,000/QALY; 53.7% probability at a WTP of $100,000/QALY) for first-line treatment. Cost-effectiveness was dependent on assumptions around decision-makers’ WTP and the cost of the assay. Conclusions: We encourage further clinical trials to reduce uncertainty around the implementation of GEP-classified COO personalized treatment in this patient population
Sequential implementation of DSC-MR perfusion and dynamic [18F]FET PET allows efficient differentiation of glioma progression from treatment-related changes
Purpose: Perfusion-weighted MRI (PWI) and O-(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET) PET are both applied to discriminate tumor progression (TP) from treatment-related changes (TRC) in patients with suspected recurrent glioma. While the combination of both methods has been reported to improve the diagnostic accuracy, the performance of a sequential implementation has not been further investigated. Therefore, we retrospectively analyzed the diagnostic value of consecutive PWI and [18F]FET PET.
Methods: We evaluated 104 patients with WHO grade II–IV glioma and suspected TP on conventional MRI using PWI and dynamic [18F]FET PET. Leakage corrected maximum relative cerebral blood volumes (rCBVmax) were obtained from dynamic susceptibility contrast PWI. Furthermore, we calculated static (i.e., maximum tumor to brain ratios; TBRmax) and dynamic [18F]FET PET parameters (i.e., Slope). Definitive diagnoses were based on histopathology (n = 42) or clinico-radiological follow-up (n = 62). The diagnostic performance of PWI and [18F]FET PET parameters to differentiate TP from TRC was evaluated by analyzing receiver operating characteristic and area under the curve (AUC).
Results: Across all patients, the differentiation of TP from TRC using rCBVmax or [18F]FET PET parameters was moderate (AUC = 0.69–0.75; p 2.85 had a positive predictive value for TP of 100%, enabling a correct TP diagnosis in 44 patients. In the remaining 60 patients, combined static and dynamic [18F]FET PET parameters (TBRmax, Slope) correctly discriminated TP and TRC in a significant 78% of patients, increasing the overall accuracy to 87%. A subgroup analysis of isocitrate dehydrogenase (IDH) mutant tumors indicated a superior performance of PWI to [18F]FET PET (AUC = 0.8/< 0.62, p < 0.01/≥ 0.3).
Conclusion: While marked hyperperfusion on PWI indicated TP, [18F]FET PET proved beneficial to discriminate TP from TRC when PWI remained inconclusive. Thus, our results highlight the clinical value of sequential use of PWI and [18F]FET PET, allowing an economical use of diagnostic methods. The impact of an IDH mutation needs further investigation
Sequential implementation of DSC-MR perfusion and dynamic [F-18]FET PET allows efficient differentiation of glioma progression from treatment-related changes
Purpose Perfusion-weighted MRI (PWI) and O-(2-[F-18]fluoroethyl-)-l-tyrosine ([F-18]FET) PET are both applied to discriminate tumor progression (TP) from treatment-related changes (TRC) in patients with suspected recurrent glioma. While the combination of both methods has been reported to improve the diagnostic accuracy, the performance of a sequential implementation has not been further investigated. Therefore, we retrospectively analyzed the diagnostic value of consecutive PWI and [F-18]FET PET. Methods We evaluated 104 patients with WHO grade II-IV glioma and suspected TP on conventional MRI using PWI and dynamic [F-18]FET PET. Leakage corrected maximum relative cerebral blood volumes (rCBV(max)) were obtained from dynamic susceptibility contrast PWI. Furthermore, we calculated static (i.e., maximum tumor to brain ratios; TBRmax) and dynamic [F-18]FET PET parameters (i.e., Slope). Definitive diagnoses were based on histopathology (n = 42) or clinico-radiological follow-up (n = 62). The diagnostic performance of PWI and [F-18]FET PET parameters to differentiate TP from TRC was evaluated by analyzing receiver operating characteristic and area under the curve (AUC). Results Across all patients, the differentiation of TP from TRC using rCBV(max) or [F-18]FET PET parameters was moderate (AUC = 0.69-0.75; p 2.85 had a positive predictive value for TP of 100%, enabling a correct TP diagnosis in 44 patients. In the remaining 60 patients, combined static and dynamic [F-18]FET PET parameters (TBRmax, Slope) correctly discriminated TP and TRC in a significant 78% of patients, increasing the overall accuracy to 87%. A subgroup analysis of isocitrate dehydrogenase (IDH) mutant tumors indicated a superior performance of PWI to [F-18]FET PET (AUC = 0.8/= 0.3). Conclusion While marked hyperperfusion on PWI indicated TP, [F-18]FET PET proved beneficial to discriminate TP from TRC when PWI remained inconclusive. Thus, our results highlight the clinical value of sequential use of PWI and [F-18]FET PET, allowing an economical use of diagnostic methods. The impact of an IDH mutation needs further investigation
Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration
Purpose: Understanding the immunobiology of the 15% to 30% of patients with follicular lymphoma (FL) who experience progression of disease within 24 months (POD24) remains a priority. Solid tumors with low levels of intratumoral immune infiltration have inferior outcomes. It is unknown whether a similar relationship exists between POD24 in FL. Patients and methods: Digital gene expression using a custom code set-five immune effector, six immune checkpoint, one macrophage molecules-was applied to a discovery cohort of patients with early- and advanced-stage FL (n = 132). T-cell receptor repertoire analysis, flow cytometry, multispectral immunofluorescence, and next-generation sequencing were performed. The immune infiltration profile was validated in two independent cohorts of patients with advanced-stage FL requiring systemic treatment (n = 138, rituximab plus cyclophosphamide, vincristine, prednisone; n = 45, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone), with the latter selected to permit comparison of patients experiencing a POD24 event with those having no progression at 5 years or more. Results: Immune molecules showed distinct clustering, characterized by either high or low expression regardless of categorization as an immune effector, immune checkpoint, or macrophage molecule. Low programmed death-ligand 2 (PD-L2) was the most sensitive/specific marker to segregate patients with adverse outcomes; therefore, PD-L2 expression was chosen to distinguish immune infiltration (ie, high PD-L2) FL biopsies from immune infiltration (ie, low PD-L2) tumors. Immune infiltration tissues were highly infiltrated with macrophages and expanded populations of T-cell clones. Of note, the immune infiltration subset of patients with FL was enriched for POD24 events (odds ratio [OR], 4.32; c-statistic, 0.81; = .001), validated in the independent cohorts (rituximab plus cyclophosphamide, vincristine, prednisone: OR, 2.95; c-statistic, 0.75; = .011; and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone: OR, 7.09; c-statistic, 0.88; = .011). Mutations were equally proportioned across tissues, which indicated that degree of immune infiltration is capturing aspects of FL biology distinct from its mutational profile. Conclusion: Assessment of immune-infiltration by PD-L2 expression is a promising tool with which to help identify patients who are at risk for POD24