16 research outputs found

    Instant killing of pathogenic chytrid fungi by disposable nitrile gloves prevents disease transmission between amphibians

    Get PDF
    To prevent transmission of the pathogenic chytrid fungi Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), hygiene protocols prescribe the single use of disposable gloves for handling amphibians. We discovered that rinse water from nitrile gloves instantly kills 99% of Bd and Bsal zoospores. Transmission experiments using midwife toads (Alytes obstetricans) and Bd, and Alpine newts (Ichthyosaura alpestris) and Bsal, show that the use of the same pair of gloves for 2 subsequent individuals does not result in significant transmission of any chytrid fungus. In contrast, handling infected amphibians bare-handed caused transmission of Bsal in 4 out of 10 replicates, but did not result in transmission of Bd. Based on the manufacturer’s information, high resolution mass spectrometry (HRMS) and colorimetric tests, calcium lactate and calcium nitrate were identified as compounds with antifungal activity against both Bd and Bsal. These findings corroborate the importance of wearing gloves as an important sanitary measure in amphibian disease prevention. If the highly recommended single use of gloves is not possible, handling multiple post-metamorphic amphibians with the same pair of nitrile gloves should still be preferred above bare-handed manipulation

    Post-epizootic salamander persistence in a disease-free refugium suggests poor dispersal ability of Batrachochytrium salamandrivorans

    Get PDF
    Lack of disease spill-over between adjacent populations has been associated with habitat fragmentation and the absence of population connectivity. We here present a case which describes the absence of the spill-over of the chytrid fungus Batrachochytrium salamandrivorans (Bsal) between two connected subpopulations of fire salamanders (Salamandra salamandra). Based on neutrally evolving microsatellite loci, both subpopulations were shown to form a single genetic cluster, suggesting a shared origin and/or recent gene flow. Alpine newts (Ichthyosaura alpestris) and fire salamanders were found in the landscape matrix between the two sites, which are also connected by a stream and separated by no obvious physical barriers. Performing a laboratory trial using alpine newts, we confirmed that Bsal is unable to disperse autonomously. Vector-mediated dispersal may have been impeded by a combination of sub-optimal connectivity, limited dispersal ability of infected hosts and a lack of suitable dispersers following the rapid, Bsal-driven collapse of susceptible hosts at the source site. Although the exact cause remains unclear, the aggregate evidence suggests that Bsal may be a poorer disperser than previously hypothesized. The lack of Bsal dispersal between neighbouring salamander populations opens perspectives for disease management and stresses the necessity of implementing biosecurity measures preventing human-mediated spread

    Landscape epidemiology of Batrachochytrium salamandrivorans : reconciling data limitations and conservation urgency

    Get PDF
    Starting in 2010, rapid-fire salamander (Salamandra salamandra) population declines in northwestern Europe heralded the emergence of Batrachochytrium salamandrivorans (Bsal), a salamander-pathogenic chytrid fungus. Bsal poses an imminent threat to global salamander diversity owing to its wide host range, high pathogenicity, and long-term persistence in ecosystems. While there is a pressing need to develop further research and conservation actions, data limitations inherent to recent pathogen emergence obscure necessary insights into Bsal disease ecology. Here, we use a hierarchical modeling framework to describe Bsal landscape epidemiology of outbreak sites in light of these methodological challenges. Using model selection and machine learning, we find that Bsal presence is associated with humid and relatively cool, stable climates. Outbreaks are generally located in areas characterized by low landscape heterogeneity and low steepness of slope. We further find an association between Bsal presence and high trail density, suggesting that human-mediated spread may increase risk for spillover between populations. We then use distribution modeling to show that favorable conditions occur in lowlands influenced by the North Sea, where increased survey effort is needed to determine how Bsal impacts local newt populations, but also in hill- and mountain ranges in northeastern France and the lower half of Germany. Finally, connectivity analyses suggest that these hill- and mountain ranges may act as stepping stones for further spread southward. Our results provide initial insight into regional environmental conditions underlying Bsal epizootics, present updated invasibility predictions for northwestern Europe, and lead us to discuss a wide variety of potential survey and research actions needed to advance future conservation and mitigation efforts

    Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains

    Get PDF
    Wildlife diseases are contributing to the current Earth’s sixth mass extinction; one disease, chytridiomycosis, has caused mass amphibian die-offs. While global spread of a hypervirulent lineage of the fungus Batrachochytrium dendrobatidis (BdGPL) causes unprecedented loss of vertebrate diversity by decimating amphibian populations, its impact on amphibian communities is highly variable across regions. Here, we combine field data with in vitro and in vivo trials that demonstrate the presence of a markedly diverse variety of low virulence isolates of BdGPL in northern European amphibian communities. Pre-exposure to some of these low virulence isolates protects against disease following subsequent exposure to highly virulent BdGPL in midwife toads (Alytes obstetricans) and alters infection dynamics of its sister species B. salamandrivorans in newts (Triturus marmoratus), but not in salamanders (Salamandra salamandra). The key role of pathogen virulence in the complex host-pathogen-environment interaction supports efforts to limit pathogen pollution in a globalized world

    Distribution, ecology, and conservation of the critically endangered frog Psychrophrynella illimani (Anura: Craugastoridae) with the description of its call

    Get PDF
    Amphibian populations have been declining worldwide for decades with a multitude of causes having been identified. Conservationists try to reverse the situation, but for many species, important information on distribution, habitat and ecology are missing, which makes the assessment of conservation priorities problematic. Although South America holds the largest number of extant amphibian species in the world, many of them are poorly studied. This is also the case for most species of Psychrophrynella, a genus of cold-adapted frogs occurring in the high Andes, the majority of which having only recently been described. We organized an extensive field survey to study the ecology of Psychrophrynella illimani, a critically endangered species endemic to a single valley in Bolivia that has not been reported on again since its discovery in 2002. We found P. illimani to be locally common and here report new localities, extending its known distribution. Furthermore, we provide new information on its morphology, ecology, and reproductive behaviour and describe for the first time its call. We also identify and discuss several threats that might affect this species? survival. Fil: Willaert, Bert. Jampatu Project; BélgicaFil: Reichle,Steffen. Quinta Totaí; BoliviaFil: Stegen,Gwij. University of Ghent; BélgicaFil: Martel, An. University of Ghent; BélgicaFil: Barrón Lavayen, Sophia. Museo de Historia Natural Alcide d’Orbigny; BoliviaFil: Sánchez de Lozada Bianco, Natalia. Museo de Historia Natural Alcide d’Orbigny; BoliviaFil: Greenhawk, Norman Alastor. Tropic Ventures Research & Education Foundation; Puerto RicoFil: Agostini, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Muñoz Calderon, Arturo Alejandro. University of Ghent; Bélgica. Museo de Historia Natural Alcide d’Orbigny; Bolivi

    Side-by-side secretion of Late Palaeozoic diverged courtship pheromones in an aquatic salamander

    Get PDF
    Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.status: publishe
    corecore