1,200 research outputs found
Self-written waveguides in photopolymerizable resins
We study the optically-induced growth and interaction of self-written
waveguides in a photopolymerizable resin. We investigate experimentally how the
interaction depends on the mutual coherence and relative power of the input
beams, and suggest an improved analytical model that describes the growth of
single self-written waveguides and the main features of their interaction in
photosensitive materials.Comment: 3 pages, 3 figure
Spatial Optical Solitons due to Multistep Cascading
We introduce a novel class of parametric optical solitons supported
simultaneously by two second-order nonlinear cascading processes,
second-harmonic generation and sum-frequency mixing. We obtain, analytically
and numerically, the solutions for three-wave spatial solitons and show that
the presence of an additional cascading mechanism can change dramatically the
properties and stability of two-wave quadratic solitary waves.Comment: 6 pages, 4 figure
Field trial for assessment of avian influenza vaccination effectiveness in Indonesia
The aim of this field study was to determine the efficacy of vaccination against highly pathogenic avian influenza (HPAI) virus strain H5N1 in Indonesia. A limited, prototype clinical trial was performed using a standardised treatment group, in which poultry flocks were vaccinated at least twice with a selected H5N1 vaccine, and a control group comprising flocks treated with nonstandardised procedures chosen by the farmer. Each group consisted of six flocks comprising either layers or native chickens. Haemagglutination inhibition (HI) antibody levels were determined by regular serum sampling, and outbreak surveillance relied on non-Al-vaccinated sentinel birds. After three vaccinations high antibody titres were produced in the treatment group, and the percentage of layers with an HI titre > 40 was approximately 90%. Although no conclusions can be drawn regarding reduction of virus transmission, this study demonstrated that 11 farms remained free from Al during the observation period, and that a surveillance programme based on differentiating infected from vaccinated animals (DIVA) can be implemented
Smoothed Analysis of Tensor Decompositions
Low rank tensor decompositions are a powerful tool for learning generative
models, and uniqueness results give them a significant advantage over matrix
decomposition methods. However, tensors pose significant algorithmic challenges
and tensors analogs of much of the matrix algebra toolkit are unlikely to exist
because of hardness results. Efficient decomposition in the overcomplete case
(where rank exceeds dimension) is particularly challenging. We introduce a
smoothed analysis model for studying these questions and develop an efficient
algorithm for tensor decomposition in the highly overcomplete case (rank
polynomial in the dimension). In this setting, we show that our algorithm is
robust to inverse polynomial error -- a crucial property for applications in
learning since we are only allowed a polynomial number of samples. While
algorithms are known for exact tensor decomposition in some overcomplete
settings, our main contribution is in analyzing their stability in the
framework of smoothed analysis.
Our main technical contribution is to show that tensor products of perturbed
vectors are linearly independent in a robust sense (i.e. the associated matrix
has singular values that are at least an inverse polynomial). This key result
paves the way for applying tensor methods to learning problems in the smoothed
setting. In particular, we use it to obtain results for learning multi-view
models and mixtures of axis-aligned Gaussians where there are many more
"components" than dimensions. The assumption here is that the model is not
adversarially chosen, formalized by a perturbation of model parameters. We
believe this an appealing way to analyze realistic instances of learning
problems, since this framework allows us to overcome many of the usual
limitations of using tensor methods.Comment: 32 pages (including appendix
Magnetization of polydisperse colloidal ferrofluids: Effect of magnetostriction
We exploit magnetostriction in polydisperse ferrofluids in order to generate
nonlinear responses, and apply a thermodynamical method to derive the desired
nonlinear magnetic susceptibility. For an ideal gas, this method has been
demonstrated to be in excellent agreement with a statistical method. In the
presence of a sinusoidal ac magnetic field, the magnetization of the
polydisperse ferrofluid contains higher-order harmonics, which can be extracted
analytically by using a perturbation approach. We find that the harmonics are
sensitive to the particle distribution and the degree of field-induced
anisotropy of the system. In addition, we find that the magnetization is higher
in the polydisperse system than in the monodisperse one, as also found by a
recent Monte Carlo simulation. Thus, it seems possible to detect the size
distribution in a polydisperse ferrofluid by measuring the harmonics of the
magnetization under the influence of magnetostriction.Comment: 23 pages, 4 figures. To be accepted for publication in Phys. Rev.
Multistep cascading and fourth-harmonic generation
We apply the concept of multistep cascading to the problem of fourth-harmonic
generation in a single quadratic crystal. We analyze a new model of parametric
wave mixing and describe its stationary solutions for two- and three-color
plane waves and spatial solitons. Some applications to the optical frequency
division as well as the realization of the double-phase-matching processes in
engineered QPM structures with phase reversal sequences are also discussed.Comment: 3 pages, 3 figure
Spatial soliton robustness against spatially anisotropic phase perturbations
We demonstrate experimentally that spatial solitons in AlGaAs waveguides are resilient against spatially anisotropic perturbations in their phase caused by introducing a wedge in the soliton propagation path. In agreement with numerical simulations, the solitons maintained their initial beam shape and width, independent of the fraction of the soliton beam intercepted by the wedge
Genetically Distinct Behavioral Modules Underlie Natural Variation in Thermal Performance Curves
Thermal reaction norms pervade organismal traits as stereotyped responses to temperature, a fundamental environmental input into sensory and physiological systems. Locomotory behavior represents an especially plastic read-out of animal response, with its dynamic dependence on environmental stimuli presenting a challenge for analysis and for understanding the genomic architecture of heritable variation. Here we characterize behavioral reaction norms as thermal performance curves for the nematode Caenorhabditis briggsae, using a collection of 23 wild isolate genotypes and 153 recombinant inbred lines to quantify the extent of genetic and plastic variation in locomotory behavior to temperature changes. By reducing the dimensionality of the multivariate phenotypic response with a function-valued trait framework, we identified genetically distinct behavioral modules that contribute to the heritable variation in the emergent overall behavioral thermal performance curve. Quantitative trait locus mapping isolated regions on Chromosome II associated with locomotory activity at benign temperatures and Chromosome V loci related to distinct aspects of sensitivity to high temperatures, with each quantitative trait locus explaining up to 28% of trait variation. These findings highlight how behavioral responses to environmental inputs as thermal reaction norms can evolve through independent changes to genetically distinct modular components of such complex phenotypes
Frequency down conversion through Bose condensation of light
We propose an experimental set up allowing to convert an input light of
wavelengths about into an output light of a lower frequency. The
basic principle of operating relies on the nonlinear optical properties
exhibited by a microcavity filled with glass. The light inside this material
behaves like a 2D interacting Bose gas susceptible to thermalise and create a
quasi-condensate. Extension of this setup to a photonic bandgap material (fiber
grating) allows the light to behave like a 3D Bose gas leading, after
thermalisation, to the formation of a Bose condensate. Theoretical estimations
show that a conversion of into is achieved with an input
pulse of about with a peak power of , using a fiber grating
containing an integrated cavity of size about .Comment: 4 pages, 1 figure
Coherently tunable third-order nonlinearity in a nanojunction
A possibility of tuning the phase of the third-order Kerr-type nonlinear
susceptibility in a system consisting of two interacting metal nanospheres and
a nonlinearly polarizable molecule is investigated theoretically and
numerically. It is shown that by varying the relative inter-sphere separation,
it is possible to tune the phase of the effective nonlinear susceptibility
\chi^{(3)}(\omega;\omega,\omega,-\omega)2\pi$.Comment: 10 pages 5 figure
- …