284 research outputs found

    A PUSH AND PULL INTERVENTION TO CONTROL AVIAN INFLUENZA: A LESSON LEARNED FROM THE WESTERN JAVA POULTRY SECTOR

    Get PDF
    HPAI H5N1 is considered endemic in Indonesian poultry and poses a major challenge to animal and human health authorities. The complex structure of the Indonesian poultry meat value chain is an important reason for the limited efficacy of HPAI control in Indonesia so far. The paper objective is to describe how to implement a push-and-pull strategy in the poultry supply chain to control HPAI infection in Western Java. More specifically, this study investigates the poultry value chain in Western Java in relation to consumers’ behavior and governance of the value chain. Implementation of biosecurity and HPAI control measures was strongly related to the governance structure of the chain, with interactions that accentuating the risk of HPAI. In conclusion, a push strategy, as an incentive mechanism, should be designed in such a way that it pays attention to the interactions between actors in a value chain and their impact on introduction and transmission of disease. Moreover, a pull strategy as an incentive mechanism for consumers forcing producers to improve their production environment into higher levels of biosecurity is expected to be less effective than a push strategy targeting producers. Keywords: avian influenza, biosecurity, consumer preferences, willingness to pay, a push and pull strateg

    Transmission Dynamics of Low Pathogenicity Avian Influenza Infections in Turkey Flocks

    Get PDF
    Low pathogenicity avian influenza (LPAI) viruses of H5 and H7 subtypes have the potential to mutate into highly pathogenic strains (HPAI), which can threaten human health and cause huge economic losses. The current knowledge on the mechanisms of mutation from LPAI to HPAI is insufficient for predicting which H5 or H7 strains will mutate into an HPAI strain, and since the molecular changes necessary for the change in virulence seemingly occur at random, the probability of mutation depends on the number of virus replicates, which is associated with the number of birds that acquire infection. We estimated the transmission dynamics of LPAI viruses in turkeys using serosurveillance data from past epidemics in Italy. We fitted the proportions of birds infected in 36 flocks into a hierarchical model to estimate the basic reproduction number (R0) and possible variations in R0 among flocks caused by differences among farms. We also estimated the distributions of the latent and infectious periods, using experimental infection data with outbreak strains. These were then combined with the R0 to simulate LPAI outbreaks and characterise the resulting dynamics. The estimated mean within-flock R0 in the population of infected flocks was 5.5, indicating that an infectious bird would infect an average of more than five susceptible birds. The results also indicate that the presence of seropositive birds does not necessarily mean that the virus has already been cleared and the flock is no longer infective, so that seropositive flocks may still constitute a risk of infection for other flocks. In light of these results, the enforcement of appropriate restrictions, the culling of seropositive flocks, or pre-emptive slaughtering may be useful. The model and parameter estimates presented in this paper provide the first complete picture of LPAI dynamics in turkey flocks and could be used for designing a suitable surveillance program

    Оформление конструкторской документации на печатные платы в условиях автоматизированного проектирования и подготовки производства

    Get PDF
    Предложен подход к оформлению чертежей печатных плат, позволяющий значительно упростить документацию, а также упорядочить документооборот

    Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data

    Full text link
    Knowledge on the transmission tree of an epidemic can provide valuable insights into disease dynamics. The transmission tree can be reconstructed by analysing either detailed epidemiological data (e.g. contact tracing) or, if sufficient genetic diversity accumulates over the course of the epidemic, genetic data of the pathogen. We present a likelihood-based framework to integrate these two data types, estimating probabilities of infection by taking weighted averages over the set of possible transmission trees. We test the approach by applying it to temporal, geographical and genetic data on the 241 poultry farms infected in an epidemic of avian influenza A (H7N7) in The Netherlands in 2003. We show that the combined approach estimates the transmission tree with higher correctness and resolution than analyses based on genetic or epidemiological data alone. Furthermore, the estimated tree reveals the relative infectiousness of farms of different types and sizes. (Résumé d'auteur

    A single vaccination of commercial broilers does not reduce transmission of H5N1 highly pathogenic avian influenza

    Get PDF
    Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity

    Risk based culling for highly infectious diseases of livestock

    Get PDF
    The control of highly infectious diseases of livestock such as classical swine fever, foot-and-mouth disease, and avian influenza is fraught with ethical, economic, and public health dilemmas. Attempts to control outbreaks of these pathogens rely on massive culling of infected farms, and farms deemed to be at risk of infection. Conventional approaches usually involve the preventive culling of all farms within a certain radius of an infected farm. Here we propose a novel culling strategy that is based on the idea that farms that have the highest expected number of secondary infections should be culled first. We show that, in comparison with conventional approaches (ring culling), our new method of risk based culling can reduce the total number of farms that need to be culled, the number of culled infected farms (and thus the expected number of human infections in case of a zoonosis), and the duration of the epidemic. Our novel risk based culling strategy requires three pieces of information, viz. the location of all farms in the area at risk, the moments when infected farms are detected, and an estimate of the distance-dependent probability of transmission
    corecore