87 research outputs found

    Buoyancy and hydrostatic balance in a West Indian Ocean coelacanth Latimeria chalumnae

    Get PDF
    Background: Buoyancy and balance are important parameters for slow-moving, low-metabolic, aquatic organisms. The extant coelacanths have among the lowest metabolic rates of any living vertebrate and can aford little energy to keep station. Previous observations on living coelacanths support the hypothesis that the coelacanth is neutrally buoyant and in close-to-perfect hydrostatic balance. However, precise measurements of buoyancy and balance at diferent depths have never been made. Results: Here we show, using non-invasive imaging, that buoyancy of the coelacanth closely matches its depth distribution. We found that the lipid-flled fatty organ is well suited to support neutral buoyancy, and due to a closeto-perfect hydrostatic balance, simple maneuvers of fns can cause a considerable shift in torque around the pitch axis allowing the coelacanth to assume diferent body orientations with little physical efort. Conclusions: Our results demonstrate a close match between tissue composition, depth range and behavior, and our collection-based approach could be used to predict depth range of less well-studied coelacanth life stages as well as of deep sea fshes in general

    An Innovative Plate Concept for Rotational Guided Growth: A Porcine Pilot Study

    Get PDF
    BackgroundRotational deformities in children are currently treated with an osteotomy, acute de-rotation, and surgical fixation. Meanwhile, guided growth is now the gold standard in pediatric coronal deformity correction. This study aimed to evaluate the feasibility of a novel implant intended for rotational guided growth (RotOs Plate) in a large porcine animal model.MethodologyA submuscular plate was inserted on the medial and lateral aspect of the distal femoral physis of the left femur in 6 pigs. Each plate was anchored with a screw in the metaphysis and epiphysis respectively. The plates were expected to rotate the femur externally. The right femur acted as a control in a paired design. The animals were housed for 12 weeks after surgery. MRI scanning of both femora was performed before euthanasia after 12 weeks. Rotation was determined as the difference in the femoral version on MRI between the operated and non-operated femur after 12 weeks.ResultsExternal rotation in all operated femurs was observed. The mean difference in the femoral version on MRI between operated and non-operated femurs was 12.5° (range 9°-16°). No significant changes in axial growth were detected.ConclusionsThis study shows encouraging results regarding rotational guided growth, which may replace current invasive surgical treatment options for malrotation in children. However, further studies addressing potential secondary deformities are paramount and should be carried out

    Prosthetic heart valve evaluation by magnetic resonance imaging

    Get PDF
    Objective: To evaluate the potential of magnetic resonance imaging (MRI) for evaluation of velocity fields downstream of prosthetic aortic valves. Furthermore, to provide comparative data from bileaflet aortic valve prostheses in vitro and in patients. Methods: A pulsatile flow loop was set up in a 7.0 Tesla MRI scanner to study fluid velocity data downstream of a 25 mm aortic bileaflet heart valve prosthesis. Three dimensional surface plots of velocity fields were displayed. In six NYHA class I patients blood velocity profiles were studied downstream of their St. Jude Medical aortic valves using a 1.5 Tesla MRI whole-body scanner. Blood velocity data were displayed as mentioned above. Results: Fluid velocity profiles obtained from in vitro studies 0.25 valve diameter downstream of the valve exhibited significant details about the cross sectional distribution of fluid velocities. This distribution completely reflected the valve design. Blood velocity profiles in humans were considerably smoother and in some cases skewed with the highest velocities toward the anterior-right ascending aortic wall. Conclusion: Display and interpretation of fluid and blood velocity data obtained downstream of prosthetic valves is feasible both in vitro and in vivo using the MRI technique. An in vitro model with a straight tube and the test valve oriented orthogonally to the long axis of the test tube does not entail fluid velocity profiles which are compatible to those obtained from humans, probably due to the much more complex human geometry, and variable alignment of the valve with the ascending aorta. With the steadily improving quality of MRI scanners this technique has significant potential for comparative in vitro and in vivo hemodynamic evaluation of heart valve

    Heterochronic maturation of anatomical plugs for protecting the airway in rorqual whales (Balaenopteridae)

    Get PDF
    Recently, a unique mechanism for protecting the airway during lunge feeding was discovered in rorqual whales (Balaenopteridae). This mechanism is based on an oral plug structure in the soft palate with similarities in musculo-fatty composition to the nasal plugs protecting the respiratory tract of rorquals from water entry and barotrauma during diving. As a follow-up, we present here a developmental series on fetal, prenatal, juvenile and adult specimens across five species of rorquals, showing differential maturation of the nasal and oral respiratory protection plugs. Nasal plugs are fully formed to serve an immediate crucial function at birth. By contrast, the soft palate remains muscular until the onset of solid food intake, where a musculo-fatty oral plug is developed

    Impaired aortic distensibility and elevated central blood pressure in Turner Syndrome:a cardiovascular magnetic resonance study

    Get PDF
    Abstract Background Women with Turner Syndrome have an increased risk for aortic dissection. Arterial stiffening is a risk factor for aortic dilatation and dissection. Here we investigate if arterial stiffening can be observed in Turner Syndrome patients and is an initial step in the development of aortic dilatation and subsequent dissection. Methods Fifty-seven women with Turner Syndrome (48 years [29–66]) and thirty-six age- and sex-matched controls (49 years [26–68]) were included. Distensibility, blood pressure, carotid-femoral pulse wave velocity (PWV), the augmentation index (Aix) and central blood pressure were determined using cardiovascular magnetic resonance, a 24-h blood pressure measurement and applanation tonometry. Aortic distensibility was determined at three locations: ascending aorta, transverse aortic arch, and descending aorta. Results Mean aortic distensibility in the descending aorta was significantly lower in Turner Syndrome compared to healthy controls (P = 0.02), however, this was due to a much lower distensibility among Turner Syndrome with coarctation, while Turner Syndrome without coarctation had similar distensibility as controls. Both the mean heart rate adjusted Aix (31.4% vs. 24.4%; P = 0.02) and central diastolic blood pressure (78.8 mmHg vs. 73.7 mmHg; P = 0.02) were higher in Turner Syndrome compared to controls, and these indices correlated significantly with ambulatory night-time diastolic blood pressure. The presence of aortic coarctation (r = − 0.44, P = 0.005) and a higher central systolic blood pressure (r = − 0.34, P = 0.03), age and presence of diabetes were inversely correlated with aortic distensibility in TS. Conclusion Aortic wall function in the descending aorta is impaired in Turner Syndrome with lower distensibility among those with coarctation of the aorta, and among all Turner Syndrome higher Aix, and elevated central diastolic blood pressure when compared to sex- and age-matched controls. Trial registration The study was registered at ClinicalTrials.gov (#NCT01678274) on September 3, 2012

    Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional, unidirectionally encoded, cardiovascular magnetic resonance (CMR) velocity mapping is an established technique for the quantification of blood flow in large vessels. However, it requires an operator to correctly align the planes of acquisition. If all three directional components of velocity are measured for each voxel of a 3D volume through the phases of the cardiac cycle, blood flow through any chosen plane can potentially be calculated retrospectively. The initial acquisition is then more time consuming but relatively operator independent.</p> <p>Aims</p> <p>To compare the curves and volumes of flow derived from conventional 2D and comprehensive 3D flow acquisitions in a steady state flow model, and in vivo through planes transecting the ascending aorta and pulmonary trunk in 10 healthy volunteers.</p> <p>Methods</p> <p>Using a 1.5 T Phillips Intera CMR system, 3D acquisitions used an anisotropic 3D segmented k-space phase contrast gradient echo sequence with a short EPI readout, with prospective ECG and diaphragm navigator gating. The 2D acquisitions used segmented k-space phase contrast with prospective ECG and diaphragm navigator gating. Quantitative flow analyses were performed retrospectively with dedicated software for both the in vivo and in vitro acquisitions.</p> <p>Results</p> <p>Analysis of in vitro data found the 3D technique to have overestimated the continuous flow rate by approximately 5% across the entire applied flow range. In vivo, the 2D and the 3D techniques yielded similar volumetric flow curves and measurements. Aortic flow: (mean ± SD), 2D = 89.5 ± 13.5 ml & 3D = 92.7 ± 17.5 ml. Pulmonary flow: 2D = 98.8 ± 18.4 ml & 3D = 94.9 ± 19.0 ml). Each in vivo 3D acquisition took about 8 minutes or more.</p> <p>Conclusion</p> <p>Flow measurements derived from the 3D and 2D acquisitions were comparable. Although time consuming, comprehensive 3D velocity acquisition could be relatively operator independent, and could potentially yield information on flow through several retrospectively chosen planes, for example in patients with congenital or valvular heart disease.</p
    corecore