1,059 research outputs found

    Targeting autophagy: a novel anticancer strategy with therapeutic implications for imatinib resistance

    Get PDF
    Autophagy is an ancient, intracellular degradative system which plays important roles in regulating protein homeostasis and which is essential for survival when cells are faced with metabolic stress. Increasing evidence suggests that autophagy also functions as a tumor suppressor mechanism that harnesses the growth and/or survival of cells as they transition towards a rapidly dividing malignant state. However, the impact of autophagy on cancer progression and on the efficacy of cancer therapeutics is controversial. In particular, although the induction of autophagy has been reported after treatment with a number of therapeutic agents, including imatinib, this response has variously been suggested to either impair or contribute to the effects of anticancer agents. More recent studies support the notion that autophagy compromises the efficacy of anticancer agents, where agents such as chloroquine (CQ) that impair autophagy augment the anticancer activity of histone deacetylase (HDAC) inhibitors and alkylating agents. Inhibition of autophagy is a particularly attractive strategy for the treatment of imatinib-refractory chronic myelogenous leukemia (CML) since a combination of CQ with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) compromises the survival of even BCR-ABL-T315I+ imatinib-resistant CML. Additional studies are clearly needed to establish the clinical utility of autophagy inhibitors and to identify patients most likely to benefit from this novel therapeutic approach

    F.A.R.O.G. FORUM, Vol. 8 No. 5

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1078/thumbnail.jp

    F.A.R.O.G. FORUM, Vol. 8 No. 7-8

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1080/thumbnail.jp

    F.A.R.O.G. FORUM, Vol. 8 No. 2

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1075/thumbnail.jp

    F.A.R.O.G. FORUM, Vol. 8 No. 2

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1075/thumbnail.jp

    F.A.R.O.G. FORUM, Vol. 8 No. 4

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1077/thumbnail.jp

    Prostaglandin E2 drives cyclooxygenase-2 expression via cyclic AMP response element activation in human pancreatic cancer cells.

    Get PDF
    Cyclooxygenase-2 (COX-2) is constitutively expressed in most human primary carcinomas and with its synthesized product, prostaglandin E2 (PGE2), appears to play important roles in tumor invasion, angiogenesis, resistance to apoptosis and suppression of host immunity. However, the molecular mechanisms that control COX-2 expression are unclear. The purpose of this study was to clarify the mechanism of basal and PGE2-mediated COX-2 expression in the highly metastatic L3.6pl human pancreatic cancer cell line. Using RNA interference to disrupt the expression of CREB and the NF-kappaB p65 subunit, we found that both are involved in maintaining basal COX-2 expression in L3.6pl cells. We also demonstrated that PGE2 increased the cyclic AMP concentration, thereby activating protein kinase A (PKA), which in turn phosphorylated the cyclic AMP response element binding protein (CREB), leading to interaction with the cyclic AMP response element in the promoter region of the COX-2 gene. Immunocytochemical analysis confirmed that PGE2 stimulated the translocation of PKA to the nucleus and increased the immuno-reactivity of phosphorylated CREB. Pretreatment with the PKA selective inhibitor H 89 and the E-prostanoid receptor 2 inhibitor AH 6809 reduced COX-2 upregulation by PGE2. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay results further suggested a role for CREB in COX-2 transcriptional control. Understanding the pathways that control COX-2 expression may lead to a better understanding of its dysregulation in pancreatic carcinomas and facilitate the development of novel therapeutic approaches

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species
    • 

    corecore