44 research outputs found

    Arthropod Fauna Associated with Wild and Cultivated Cranberries in Wisconsin

    Get PDF
    The cranberry (Vaccinium macrocarpon Aiton) is an evergreen, trailing shrub native to North American peatlands. It is cultivated commercially in the US and Canada, with major production centers in Wisconsin, Massachusetts, New Jersey, Washington, Québec, and British Columbia. Despite the agricultural importance of cranberry in Wisconsin, relatively little is known of its arthropod associates, particularly the arachnid fauna. Here we report preliminary data on the insect and spider communities associated with wild and cultivated cranberries in Wisconsin. We then compare the insect and spider communities of wild cranberry systems to those of cultivated cranberries, indexed by region. Approximately 7,400 arthropods were curated and identified, spanning more than 100 families, across 11 orders. The vast majority of specimens and diversity derived from wild ecosystems. In both the wild and cultivated systems, the greatest numbers of families were found among the Diptera (midges, flies) and Hymenoptera (bees, ants, wasps), but numerically, the Hymenoptera and Araneae (spiders) were dominant. Within the spider fauna, 18 new county records, as well as a new Wisconsin state record (Linyphiidae: Ceratinopsis laticeps (Em.)), were documented. While more extensive sampling will be needed to better resolve arthropod biodiversity in North American cranberry systems, our findings represent baseline data on the breadth of arthropod diversity in the Upper Midwest, USA

    More than just meat: Carcass decomposition shapes trophic identities in a terrestrial vertebrate

    Get PDF
    Most food web models fail to account for the full complexity of interactions within a community, particularly where microbes are involved. Carcasses are microbe-rich resources and may represent a common nexus for the macrobiome and microbiome, effectively uniting autotrophs, consumers, predators and microbiota. We evaluated the role of carcasses as multitrophic resources and explored dietary partitioning for a sexually dimorphic obligate scavenger known for its hierarchical social system. This study was set in a well-studied community of camelids Vicugna, Lama guanicoe, pumas Puma concolor and Andean condors Vultur gryphus in the Andes. We hypothesized that condors, by feeding on trophically distinct dietary substrates within any given carcass, would have highly variable trophic position (TP) values. Furthermore, we expected that the microbial consumers within the carcass would inflate TP values in both, the carrion and the condors. Thus, we expected that the trophic heterogeneity within a carcass could facilitate sex-based dietary partitioning in condors. We used a multifaceted approach to assess the foraging of Andean condors, using regurgitated pellet and bulk isotopic analyses, and also quantified the TP of the entire community of graminoids, camelids, camelid carrion, pumas, and female and male condors employing compound-specific stable isotopes analysis of amino acids. Our analysis of condor pellets and bulk isotopes revealed non-trivial plant consumption, close to 10% of condor diet. Isotope analysis of amino acids revealed that condors had highly variable TPs (2.9 ± 0.3) compared to pumas (3.0 ± 0.0) and camelids (2.0 ± 0.1), likely representing ‘trophic omnivory’, wherein the condors consume plants (TP = 1.0 ± 0.1) and microbe-colonized carrion (2.3 ± 0.1). Female condors exhibited a TP (2.8 ± 0.2) lower than strict carnivory, suggesting that they consume more plant biomass in a carcass, while males (TP = 3.1 ± 0.3) are likely consuming more of the microbe-rich animal tissue. Our study highlights that carcasses represent a trophically heterogeneous resource and that vertebrate scavengers can feed across trophic groups within the carcass, from autotrophs to secondary consumers, and from both the macrobiome and microbiome. Thus, integration of microbes in macroecological contexts can help to resolve trophic identity, and better characterize the importance of microbes in detritivorous and omnivorous species. Read the free Plain Language Summary for this article on the Journal blog.Fil: Barceló, Gonzalo. University of Wisconsin; Estados UnidosFil: Perrig, Paula Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Wisconsin; Estados UnidosFil: Dharampal, Prarthana. University of Wisconsin; Estados UnidosFil: Donadio, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fundación Rewilding Argentina; ArgentinaFil: Steffan, Shawn A.. United States Department of Agriculture. Agriculture Research Service; Estados Unidos. University of Wisconsin; Estados UnidosFil: Pauli, Jonathan Nicholas. University of Wisconsin; Estados Unido

    Arthropod Fauna Associated with Wild and Cultivated Cranberries in Wisconsin

    Get PDF
    The cranberry (Vaccinium macrocarpon Aiton) is an evergreen, trailing shrub native to North American peatlands. It is cultivated commercially in the US and Canada, with major production centers in Wisconsin, Massachusetts, New Jersey, Washington, Québec, and British Columbia. Despite the agricultural importance of cranberry in Wisconsin, relatively little is known of its arthropod associates, particularly the arachnid fauna. Here we report preliminary data on the insect and spider communities associated with wild and cultivated cranberries in Wisconsin. We then compare the insect and spider communities of wild cranberry systems to those of cultivated cranberries, indexed by region. Approximately 7,400 arthropods were curated and identified, spanning more than 100 families, across 11 orders. The vast majority of specimens and diversity derived from wild ecosystems. In both the wild and cultivated systems, the greatest numbers of families were found among the Diptera (midges, flies) and Hymenoptera (bees, ants, wasps), but numerically, the Hymenoptera and Araneae (spiders) were dominant. Within the spider fauna, 18 new county records, as well as a new Wisconsin state record (Linyphiidae: Ceratinopsis laticeps (Em.)), were documented. While more extensive sampling will be needed to better resolve arthropod biodiversity in North American cranberry systems, our findings represent baseline data on the breadth of arthropod diversity in the Upper Midwest, USA

    Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems

    Get PDF
    In this study we used sticky traps baited with plant volatile lures to monitor the biodiversity of natural enemies in orchard ecosystems in the western U.S. We compared the diversity of predator genera from season total trap catches in 37 different orchards (apple, cherry, pear and walnut) over a two-year period (2010−2011) using standardized Hill number biodiversity indices and community similarity profiles. For a subset of 23 of these orchards we were also able to monitor the change in biodiversity of predator genera over the full growing season in the different orchard crops. A total of 37,854 individuals from 31 different genera of foliage-active generalist predators were collected from all orchards combined. Mean sample coverage was high (0.98) and richness, diversity and evenness differed between crops in 2010, but not in 2011. There was more than 90% similarity in the richness of predator genera among crops and among orchards within crops, but a greater level of differentiation was observed among orchards when variation in their relative abundance and dominance in the communities was taken into account. There was a consistent rise in predator generic richness and diversity through the season in both years for apple, cherry and pear orchards, but in walnut orchards, a steep rise from March to May was followed by a decline through the rest of the season. In an additional component of the study, the species level similarity of predator and parasitoid communities was analyzed for total season trap catch data from six walnut orchards. The rarefied species richness of parasitoids was much greater than that for predators, although the diversity, evenness and dominance of the parasitoid species varied considerably among orchards. The results from this study highlight the fact that natural enemy communities in orchard ecosystems can be effectively monitored using plant volatile traps, and that these communities are surprisingly diverse despite frequent disturbance from pest management intervention

    From planning to execution to the future: An overview of a concerted effort to enhance biological control in apple, pear, and walnut orchards in the western U.S.

    Get PDF
    We embarked on a large project designed to help enhance biological control in apple, pear and walnut orchards in the western U.S., where management programs were in the midst of a transition from older organo-phosphate insecticides to mating disruption and newer reduced-risk insecticides. A “pesticide replacement therapy” approach resulted in unstable management programs with unpredictable outbreaks of spider mites and aphids. Our project was designed to provide growers and pest managers with information on the effects of newer pesticide chemistries on a suite of representative natural enemies in both the laboratory and field, potential of new monitoring tools using herbivore-induced plant volatiles and floral volatiles, phenology of the key natural enemy species, economic consequences of using an enhanced biological control program, and value of an outreach program to get project outcomes into the hands of decision-makers. We present an overview of both the successes and failures of the project and of new projects that have spun off from this project to further enhance biological control in our systems in the near future

    Ecological network complexity scales with area

    Get PDF
    Larger geographical areas contain more species—an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity–area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.This work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41 and 394 ANR-11-IDEX-002-02) to J.M.M., by a Region Midi-Pyrenees project (CNRS 121090) to J.M.M., and by the FRAGCLIM Consolidator Grant (726176) to J.M.M. from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program. The study was also supported by Spanish MICINN projects CGL2009-12646, CSD2008-0040 and CGL2013-41856 to J.B. and A.R. C.E. was funded through the São Paulo Research Foundation (FAPESP 2015/15172-7). V.A.G.B. was funded by National Funds through FCT—Foundation for Science and Technology under the Project UIDB/05183/2020. W.T. received funding from the ERA-Net BiodivERsA—Belmont Forum, with the national funder Agence National pour la Recherche (FutureWeb: ANR-18-EBI4–0009 and BearConnect: ANR-16-EBI3-0003).Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Flower-visitors of Baccharis pilularis De Candolle subsp. consanguinea (De Candolle) C.B. Wolf (Asteraceae) in Berkeley, California

    No full text
    Volume: 73Start Page: 52End Page: 5
    corecore