856 research outputs found

    Nictaba homologs from Arabidopsis thaliana are involved in plant stress responses

    Get PDF
    Plants are constantly exposed to a wide range of environmental stresses, but evolved complicated adaptive and defense mechanisms which allow them to survive in unfavorable conditions. These mechanisms protect and defend plants by using different immune receptors located either at the cell surface or in the cytoplasmic compartment. Lectins or carbohydrate-binding proteins are widespread in the plant kingdom and constitute an important part of these immune receptors. In the past years, lectin research has focused on the stress-inducible lectins. The Nicotiana tabacum agglutinin, abbreviated as Nictaba, served as a model for one family of stress-related lectins. Here we focus on three non-chimeric Nictaba homologs from Arabidopsis thaliana, referred to as AN3, AN4, and AN5. Confocal microscopy of ArathNictaba enhanced green fluorescent protein (EGFP) fusion constructs transiently expressed in N. benthamiana or stably expressed in A. thaliana yielded fluorescence for AN4 and AN5 in the nucleus and the cytoplasm of the plant cell, while fluorescence for AN3 was only detected in the cytoplasm. RT-qPCR analysis revealed low expression for all three ArathNictabas in different tissues throughout plant development. Stress application altered the expression levels, but all three ArathNictabas showed a different expression pattern. Pseudomonas syringae infection experiments with AN4 and AN5 overexpression lines demonstrated a significantly higher tolerance of several transgenic lines to P. syringae compared to wild type plants. Finally, AN4 was shown to interact with two enzymes involved in plant defense, namely TGG1 and BGLU23. Taken together, our data suggest that the ArathNictabas represent stress-regulated proteins with a possible role in plant stress responses. On the long term this research can contribute to the development of more stress-resistant plants

    Życie i działalność profesora Antoniego Dmochowskiego (Referat na otwarcie sesji Jemu poświęconej)

    Get PDF
    Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    Differential influence of four invasive plant species on soil physicochemical properties in a pot experiment

    Get PDF
    Purpose This study compared the effects of four invasive plants, namely Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, and Solidago gigantea, as well as two native species-Artemisia vulgaris, Phalaris arundinacea, and their mixture on soil physicochemical properties in a pot experiment. Materials and methods Plants were planted in pots in two loamy sand soils. The soils were collected from fallows located outside (fallow soil) and within river valley (valley soil) under native plant communities. Aboveground plant biomass, cover, and soil physicochemical properties such as nutrient concentrations, pH, and water holding capacity (WHC) were measured after two growing seasons. Discriminant analysis (DA) was used to identify soil variables responsible for the discrimination between plant treatments. Identified variables were further compared between treatments using one-way ANOVA followed by Tukey’s HSD test. Results and discussion Plant biomass, cover, and soil parameters depended on species and soil type. DA effectively separated soils under different plant species. DA on fallow soil data separated R. laciniata from all other treatments, especially I. glandulifera, native species and bare soil, along axis 1 (related mainly to exchangeable K, N-NH_{4}, total P, N-NO_{3}, and WHC). Large differences were found between R. laciniata and S. gigantea as indicated by axis 2 (S-SO_{4}, exchangeable Mg, total P, exchangeable Ca, and total Mg). DA on valley soil data separated R. japonica from all other treatments, particularly S. gigantea, R. laciniata, and native mixture, along axis 1 (N-NO_{3}, total N, S-SO_{4}, total P, pH). Along axis 2 (N-NO_{3}, N-NH_{4}, Olsen P, exchangeable K, WHC), large differences were observed between I. glandulifera and all other invaders. Conclusions Plant influence on soil differed both among invasive species and between invasive and native species. Impatiens glandulifera had a relatively weak effect and its soil was similar to both native and bare soils. Multidirectional effects of different invaders resulted in a considerable divergence in soil characteristics. Invasion-driven changes in the soil environment may trigger feedbacks that stabilize or accelerate invasion and hinder re-colonization by native vegetation, which has implications for the restoration of invaded habitats

    The resolution of inequity by out-patient schizophrenics

    Get PDF

    Dynamic peptide libraries

    Get PDF

    Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As

    Full text link
    In this work we report results of ferromagnetic resonance studies of a 6% 15 nm (Ga,Mn)As layer, deposited on (001)-oriented GaAs. The measurements were performed with in-plane oriented magnetic field, in the temperature range between 5K and 120K. We observe a temperature induced reorientation of the effective in-plane easy axis from [-110] to [110] direction close to the Curie temperature. The behavior of magnetization is described by anisotropy fields, H_{eff} (= 4\piM -H_{2\perp}), H_{2\parallel}, and H_{4\parallel}. In order to precisely investigate this reorientation, numerical values of anisotropy fields have been determined using powerful - but still largely unknown - interval calculations. In simulation mode this approach makes possible to find all the resonance fields for arbitrarily oriented sample, which is generally intractable analytically. In 'fitting' mode we effectively utilize full experimental information, not only those measurements performed in special, distinguished directions, to reliably estimate the values of important physical parameters as well as their uncertainties and correlations.Comment: 3 pages, 3 figures. Presented at The European Conference "Physics of Magnetism 2011" (PM'11), June 27 - July 1, 2011, Poznan, Polan

    Thickness dependence of magnetic properties of (Ga,Mn)As

    Full text link
    We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.Comment: 4 pages, 4 figures and supplementary information 2 pages, 1 figur

    The chemical composition of egg plugs deposited by Sitophilus granarius L. females on grain

    Get PDF
    Over 20,000 egg plugs collected from infested wheat grain were subjected to chemical analysis.Elemental analysis showed a relatively high content of nitrogen (about 9%). It suggested that the predominant constituent of egg plugs is a protein. Spectrum obtained in ESI-MS analysis showed a series of peaks characteristic corresponding to protein of molecular weight 30073 Da. The appearance of other peaks in this spectrum suggests that studied protein is not homogenous. A sample of egg plugs incubated with pepsin yielded a complex mixture of peptides. The most abundant peak in the ESI-MS spectrum of zymatic hydrolysis products corresponds to peptide Mw 4560.76 Da. Chemical analysis indicated that the main component of egg plugs is protein. Keywords: egg plugs, chemical composition, Sitophilus granariu
    corecore