71 research outputs found

    Indexing the Event Calculus with Kd-trees to Monitor Diabetes

    Get PDF
    Personal Health Systems (PHS) are mobile solutions tailored to monitoring patients affected by chronic non communicable diseases. A patient affected by a chronic disease can generate large amounts of events. Type 1 Diabetic patients generate several glucose events per day, ranging from at least 6 events per day (under normal monitoring) to 288 per day when wearing a continuous glucose monitor (CGM) that samples the blood every 5 minutes for several days. This is a large number of events to monitor for medical doctors, in particular when considering that they may have to take decisions concerning adjusting the treatment, which may impact the life of the patients for a long time. Given the need to analyse such a large stream of data, doctors need a simple approach towards physiological time series that allows them to promptly transfer their knowledge into queries to identify interesting patterns in the data. Achieving this with current technology is not an easy task, as on one hand it cannot be expected that medical doctors have the technical knowledge to query databases and on the other hand these time series include thousands of events, which requires to re-think the way data is indexed. In order to tackle the knowledge representation and efficiency problem, this contribution presents the kd-tree cached event calculus (\ceckd) an event calculus extension for knowledge engineering of temporal rules capable to handle many thousands events produced by a diabetic patient. \ceckd\ is built as a support to a graphical interface to represent monitoring rules for diabetes type 1. In addition, the paper evaluates the \ceckd\ with respect to the cached event calculus (CEC) to show how indexing events using kd-trees improves scalability with respect to the current state of the art.Comment: 24 pages, preliminary results calculated on an implementation of CECKD, precursor to Journal paper being submitted in 2017, with further indexing and results possibilities, put here for reference and chronological purposes to remember how the idea evolve

    EXPLAINING CUSTOMER ACTIVATION WITH DEEP ATTENTION MODELS

    Get PDF
    Effectively informing consumers is a big challenge for financial service providers. Triggering involvement in the personal situation of the client is a result of sending relevant information at the right time. While general machine learning techniques are able to accurately predict the behavior of consumers, they tend to lack interpretability. This is a problem since interpretation aims at producing the information a communication department requires to be able to trigger involvement. In this paper we provide a solution for predicting and explaining customer activation as result of a series of events, by means of deep learning and attention models. The proposed solution is applied to data concerning the activity of pension fund participants and compared to standard machine learning techniques on both accuracy and interpretability. We conclude that the attention based model is as accurate as top tier machine learning algorithms in predicting customer activation, while being able to extract the key events in the communication with a single customer. This results in the ability to help understand the needs of customers on a personal level and to construct an individual marketing strategy for each customer

    Multi-Dimensional Causal Discovery

    Get PDF
    We propose a method for learning causal relations within high-dimensional tensor data as they are typically recorded in non-experimental databases. The method allows the simultaneous inclusion of numerous dimensions within the data analysis such as samples, time and domain variables construed as tensors. In such tensor data we exploit and integrate non-Gaussian models and tensor analytic algorithms in a novel way. We prove that we can determine simple causal relations independently of how complex the dimensionality of the data is. We rely on a statistical decomposition that flattens higher-dimensional data tensors into matrices. This decomposition preserves the causal information and is therefore suitable for structure learning of causal graphical models, where a causal relation can be generalised beyond dimension, for example, over all time points. Related methods either focus on a set of samples for instantaneous effects or look at one sample for effects at certain time points. We evaluate the resulting algorithm and discuss its performance both with synthetic and real-world data.

    Overview of the ImageCLEF 2015 medical classification task

    Get PDF
    This articles describes the ImageCLEF 2015 Medical Clas-sification task. The task contains several subtasks that all use a dataset of figures from the biomedical open access literature (PubMed Cen-tral). Particularly compound figures are targeted that are frequent inthe literature. For more detailed information analysis and retrieval it isimportant to extract targeted information from the compound figures.The proposed tasks include compound figure detection (separating com-pound from other figures), multi–label classification (define all sub typespresent), figure separation (find boundaries of the subfigures) and modal-ity classification (detecting the figure type of each subfigure). The tasksare described with the participation of international research groups inthe tasks. The results of the participants are then described and analysedto identify promising techniques

    Overview of the ImageCLEF 2016 Medical Task

    Get PDF
    ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language–independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well. The medical task has focused more on image retrieval in the beginning and then retrieval and classification tasks in subsequent years. In 2016 a main focus was the creation of meta data for a collection of medical images taken from articles of the the biomedical scientific literature. In total 8 teams participated in the four tasks and 69 runs were submitted. No team participated in the caption prediction task, a totally new task. Deep learning has now been used for several of the ImageCLEF tasks and by many of the participants obtaining very good results. A majority of runs was submitting using deep learning and this follows general trends in machine learning. In several of the tasks multimodal approaches clearly led to best results

    A self-healing distributed pervasive health system

    Full text link

    Monitoring spatial sustainable development: Semi-automated analysis of satellite and aerial images for energy transition and sustainability indicators

    Full text link
    Solar panels are installed by a large and growing number of households due to the convenience of having cheap and renewable energy to power house appliances. In contrast to other energy sources solar installations are distributed very decentralized and spread over hundred-thousands of locations. On a global level more than 25% of solar photovoltaic (PV) installations were decentralized. The effect of the quick energy transition from a carbon based economy to a green economy is though still very difficult to quantify. As a matter of fact the quick adoption of solar panels by households is difficult to track, with local registries that miss a large number of the newly built solar panels. This makes the task of assessing the impact of renewable energies an impossible task. Although models of the output of a region exist, they are often black box estimations. This project's aim is twofold: First automate the process to extract the location of solar panels from aerial or satellite images and second, produce a map of solar panels along with statistics on the number of solar panels. Further, this project takes place in a wider framework which investigates how official statistics can benefit from new digital data sources. At project completion, a method for detecting solar panels from aerial images via machine learning will be developed and the methodology initially developed for BE, DE and NL will be standardized for application to other EU countries. In practice, machine learning techniques are used to identify solar panels in satellite and aerial images for the province of Limburg (NL), Flanders (BE) and North Rhine-Westphalia (DE).Comment: This document provides the reader with an overview of the various datasets which will be used throughout the project. The collection of satellite and aerial images as well as auxiliary information such as the location of buildings and roofs which is required to train, test and validate the machine learning algorithm that is being develope

    Processing Diabetes mellitus composite events in MAGPIE

    Get PDF
    The focus of this research is in the definition of programmable expert Personal Health Systems (PHS) to monitor patients affected by chronic diseases using agent oriented programming and mobile computing to represent the interactions happening amongst the components of the system. The paper also discusses issues of knowledge representation within the medical domain when dealing with temporal patterns concerning the physiological values of the patient. In the presented agent based PHS the doctors can personalize for each patient monitoring rules that can be defined in a graphical way. Furthermore, to achieve better scalability, the computations for monitoring the patients are distributed among their devices rather than being performed in a centralized server. The system is evaluated using data of 21 diabetic patients to detect temporal patterns according to a set of monitoring rules defined. The system’s scalability is evaluated by comparing it with a centralized approach. The evaluation concerning the detection of temporal patterns highlights the system’s ability to monitor chronic patients affected by diabetes. Regarding the scalability, the results show the fact that an approach exploiting the use of mobile computing is more scalable than a centralized approach. Therefore, more likely to satisfy the needs of next generation PHSs. PHSs are becoming an adopted technology to deal with the surge of patients affected by chronic illnesses. This paper discusses architectural choices to make an agent based PHS more scalable by using a distributed mobile computing approach. It also discusses how to model the medical knowledge in the PHS in such a way that it is modifiable at run time. The evaluation highlights the necessity of distributing the reasoning to the mobile part of the system and that modifiable rules are able to deal with the change in lifestyle of the patients affected by chronic illnesses.Peer ReviewedPostprint (author's final draft
    • …
    corecore