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Abstract

Research focus: the focus of this research is in the

definition of programmable expert personal health sys-

tems to monitor patients affected by chronic diseases

using agent oriented programming and mobile comput-

ing to represent the interaction happening amongst the

components of the system. The paper also discusses is-

sues of knowledge representation within the medical do-

main when dealing with temporal patterns concerning

the physiological values of the patient.

Research method: We evaluate the presented agent

based PHS against its scalability, by comparing it with

a centralized approach and then we also use the data

of 21 diabetic patients to evaluate the accuracy of a set

of dynamic monitoring rules defined.

Results: The evaluation concerning the scalability
of the system illustrates the fact that a centralized ap-

proach towards monitoring chronic illnesses is not scal-

able and an approach making use of mobile computing

and agents experts is more likely to satisfy the needs of

next generation PHSs. The evaluation also highlights

the advantages of having dynamic rules to monitor pa-

tients, evaluating the precision of three of such rules.
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Conclusions: PHSs are becoming an adopted tech-

nology to deal with the surge of patients affected by

chronic illnesses. In this paper we discussed architec-

tural choices to make an agent based PHS more scal-

able by using a distributed mobile computing approach.

We also discussed how to model the medical knowledge

in the PHS in such a way that this is modifiable at

run time. The evaluation highlights the necessity of dis-

tributing the reasoning to the mobile part of the system

and the necessity to define modifiable rules to be able to

deal with the change in lifestyle of the patients affected

by chronic illnesses.
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1 Introduction

Diabetes mellitus (DM) is a chronic health condition in

which the pancreas does not produce enough insulin,

or the body cannot use it effectively. The former is

known as DM Type I and patients belonging to this

group need external administration of insulin, the lat-

ter is DM Type II and does not usually require exter-

nal administration of insulin. A third type is Gesta-

tional DM, which can appear during the pregnancy. In

all cases the complications may lead to have episodes

with high blood glucose levels (hyperglycemia) or low

blood glucose levels (hypoglycemia). A person with DM

can develop long-term complications such as damage to

small blood vessels in the kidneys (nephropathy) or in

the eyes (retinopathy), damage to nerves (neuropathy),

and twice the risk of having cardiovascular disease [10].

The prevention and treatment of DM includes a healthy

diet, a regular physical activity, maintaining a normal
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2 Albert Brugués et al.

body weight, and not smoking. It is estimated that DM

will affect 439 million adults by 2030 [34], and that

health expenditures for DM will be USD 490 billion by

the same year [46].

The use of pervasive healthcare [4] is a prominent

way to reduce healthcare costs caused by the preva-

lence of chronic diseases like DM. Pervasive healthcare

implies the decentralization of healthcare services by

focusing on the patients rather than the doctors [2],

and removing physical and time barriers in healthcare

to enable the paradigm of ”healthcare to anyone, any-

time and anywhere” [40]. All these goals are achieved

with the definition of Personal Health Systems (PHSs).

The typical architecture of a PHS consists on three tiers

[38] namely: Tier 1 Body Area Network (BAN), Tier 2

base station and Tier 3 remote monitoring server. The

BAN consists in a set of sensors deployed on the body

of the patient for monitoring physiological parameters.

The base station can be a tablet, a mobile phone or a

portable device which collects and aggregates the health

data produced by the BAN and sends them to the re-

mote server over the Internet. The remote server pro-

vides assistance to patients and helps doctors on the

management of their patients, and at the same time

saves the patient’s data in the hospital’s database for

electronic health records.

There is a wide range of applications for PHSs, some

provide passive safety like requesting help to caregivers

in case of a fall event [1], while others are focused on the

prevention of diseases like depression [31]. In all cases,

the development of such systems have some technolog-

ical challenges in common that must be taken into ac-

count. Amongst them are the modeling of the medical

knowledge, the scalability of the system, the personal-

ization of healthcare services for each patient and the

interoperability between different heterogeneous systems.

In the context of PHSs the medical knowledge must

be transformed to provide clinical decision support, and

improve the healthcare safety and assistance offered to

the patient. When there are data available from the

domain of interest, the typical approach is to use ma-

chine learning techniques to train classifiers to assist

in that particular domain. Moreover, these classifiers

can be customized for each patient in order to offer

the next generation of healthcare services [11]. Unfor-

tunately, the issue of defining a classifier becomes quite

difficult when dealing with temporal patterns that may

have an irregular number of events as features. In this

sense, in this paper we study the definition of rules that

can be modified and personalized according to the pref-

erence of medical doctors, to deal with patterns of this

kind.

Another desired feature for providing good health-

care services with PHSs is scalability, that is the per-

formance of these systems must not degrade when the

number of patients increases, and specially to handle

a big-data scenario where the number of patients can

be as large as an entire city being everyone monitored

[26]. Last, it is desired that different systems are inter-

operable so that they are able to ”exchange information

and use the information that has been exchanged” [20].

It has been reported that current systems are closed

in nature and therefore not supporting a collaborative

behavior [5].

This paper shows a PHSs for DM management with

the aim of minimizing the risk of developing the health

complications related with this disease. The design of

this PHS takes into consideration the previously ex-

plained issues.

The main component of this system is the MAGPIE

agent platform [8], which has been designed to run in

Android handheld devices. The use of agents in PHSs

can simplify the modeling of medical knowledge as they

are autonomous software entities, that pursue a set of

goals [44] in an intelligent way, by applying Artificial

Intelligent reasoning techniques such as deduction, and

act proactively, without necessarily receiving a stimu-

lus from the user. This set of properties can benefit the

current definition of PHSs, by having monitoring tools

that are capable of reasoning in a complex and proac-

tive way on the current patients’ physiological param-

eters. Moreover, the deployment of the agents in the

Tier 2, that is in the mobile device from each patient,

improves the scalability of the PHS in comparison with

the current state-of-the-art approach where the compu-
tations for patient monitoring are done in Tier 3. This

last tier is shared by all the patients using a particular

PHS and therefore represents an inherent bottleneck of

the system.

Concerning the personalization of healthcare ser-

vices, medical doctors using the PHS can define moni-

toring rules for each patient using a graphical web in-

terface. The creation of these rules is based on the com-

bination of different events related to the monitoring of

the patient, and the definition of the thresholds values

that make this events happen. This is an important fea-

ture as a person can be considered to have the blood

pressure high if it is 140/90 mmHg, but this measure-

ment can indicate an improvement if the person had

higher values in the past.

Finally, to achieve interoperability with other med-

ical systems the CDA standard [14] is used. In partic-

ular, the information flowing from Tier 2 to Tier 3 is

encoded according to this standard. The details on this
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part are out of the scope of this paper and the interested

reader can find more information in [9].

2 System overview

The PHS for DM monitoring reported in this paper has

two different actors: patients and doctors (see Figure 1).

The medical side of the system corresponds to the Tier

3 of a PHS. In this case, healthcare professionals can

interact with the system by means of a web application

that allows them to visualize and analyze data from

patients, and to manage and define specific monitoring

rules for each of the patients. Regarding the patient

side it maps to the Tier 1 and Tier 2, where patients

with DM are monitored by means of using an Android

smartphone (Tier 2) and a set of sensors that conforms

the BAN (Tier 1).

The smartphone has installed a mobile application

with the purpose of managing the DM. This applica-

tion is developed with the MAGPIE framework, so its

based on a multiagent system that is able to perceive

the physiological values measured by the sensors. The

agents from that system are responsible to perform rea-

soning on these data and to produce alerts according to

the monitoring rules defined by the doctors. This de-

sign strategy, where the computations are done in Tier

2 rather than in Tier 3, is expected to improve the scal-

ability of the system, as Tier 3 is a component shared

by all the patients of the system and can consequently

become a bottleneck.

The evaluation of MAGPIE has been done using

data collected with sensors from the COMMODITY12
project [22]. This project consists of a PHS for the mon-

itoring of patients affected with DM, where the follow-

ing sensors are used in the BAN:

– GlucoTel 1 for capillary blood glucose measurements

in mmol/l made six times per day on Mondays, be-

fore and after each meal; and one measurement dur-

ing the morning the rest of the days.

– PressureTel 1 for the measurement of the blood pres-

sure in mm Hg twice a day; one measurement during

the morning and one during the evening.

– WeightTel 1 a scale used to measure the weight of

the patient in kg once a day.

2.1 MAGPIE agent platform

MAGPIE is an agent platform integrated with the An-

droid OS [8]. It plays the role of Tier 2 in a PHS by

1 http://www.bodytel.com

connecting the patient and the doctor, aiming to im-

prove the management of chronic diseases. From the

side of the patient it collects the physiological values

measured by the sensors of the BAN, whereas from the

medical side it contains the medical expertise provided

by the doctor. By analyzing the physiological values

according to the medical expertise, the agents of MAG-

PIE are able to produce alerts when there is an event

of interest related to the illness being monitored.

MAGPIE is based on the concept of environment as

a first class abstraction proposed by Weyns et al. [43].

This means that the environment should be considered

as an implicit part of multiagent systems, mediating the

interaction between agents and the access to resources.

In MAGPIE, there is a relation with the virtual envi-

ronment of a multiagent system and the real environ-

ment of a chronic patient, so that there is a data flow

between both environments.

The MAGPIE agent platform consists of different

components. The central element of the platform is the

environment where it can be deployed with two main

entities: agents and context entities. Agents are cogni-

tive entities deployed on the agent environment. They

share a similar architecture with agents of other plat-

forms like PROSOCS [35], and GOLEM [7]. As in these

platforms agents are composed of a declarative mind

called agent mind and a body. The mind is the compo-

nent in charge of the agent’s reasoning abilities, and it

is situated in the environment through the component

called agent body. The agent body is the part of the

agent that receives and produces events from/to the

agent environment, so it acts as an interface between

the agent mind and the agent environment.

Context entities are the connectors linking the real

environment with the agent environment. They encap-

sulate the communication with a source of information

from the real world. The goal of a context entity is

to throw to the agent environment events related with

physical measurements from the real world, so that the

agents can perceive them. A context entity can also

communicate events happening in the agent environ-

ment to the external world, such as alerts produced by

the agents. There are different kinds of context enti-

ties modeling different sources of information in a PHS

scenario. First, measurements can come from the Blue-

tooth sensors conforming the BAN of the patient, which

can measure physiological values like the heart rate.

Second, measurements can come from the sensors of

the smartphone, which, for example, can provide the

GPS position of the patient. Third, measurements can

be provided by the patient itself through the user in-

terface of a mobile application to report values that are

difficult to measure with sensors, such as the amount
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Body Area Network (BAN)

Monitoring
Agents Internet

Medical
Staff

Hospital

Fixed or Mobile 
Network Operator

Physiological 
Values

Alerts

Monitoring
Rules

Fig. 1 Architecture of a PHS developed with MAGPIE

Fig. 2 Screenshot of the application for creating monitoring
rules

of carbohydrates of a meal. Last, monitoring rules and
alerts can be received or sent respectively to an external

remote monitoring server.

2.2 Web interface for monitoring rules

The agents of MAGPIE must provide alerts according

to monitoring rules, and medical doctors are the users

of the system who have the knowledge to define such

monitoring rules. However, they may not have knowl-

edge on logic programming to define specific monitoring

rules that are understandable by agents. To help medi-

cal doctors to play their role in an independent way, one

of the components of the PHS is a web interface where

doctors can program monitoring rules for the agents in

a graphical way. Figure 2 shows how this application

looks like.

In the context of the reported PHS a monitoring

rule is defined as a combination of events that trigger

an alert to be notified to a medical doctor; where an

event is considered as the measurement of a physio-

logical parameter categorized as high, normal or low.

The physiological parameters considered for the imple-

mentation of the web interface are the ones measured in

the COMMODITY12 project, which are: glucose, blood

pressure and weight. By combining these events two

kinds of monitoring rules can be defined:

– Complex rules: involve the combination of two or

more events in a given time window, where it is not

considered the order in which the events happen.

– Sequential rules: involve the sequence of two or more

events in a given time window, where the particular

order in which the events occur matters.

Moreover, to provide personalized healthcare ser-

vices, the medical doctor can define the high and low

thresholds for each physiological parameter and patient,

and therefore the normal range too. The creation of a

monitoring rule follows the approach of a visual pro-

gramming language, where different graphical elements

are combined together to define the logic of a computer

program. As stated before, monitoring rules are a com-

bination of events, and therefore this is the only kind

of graphical element that must be modeled, which in

turn minimizes the complexity for creating the rules.

Figure 3 shows the graphical design of an event, where

Event defines the category and the name of a physiolog-

ical parameter (i.e. high blood pressure); T is the time

window given to the event, that is the amount of time

after the specified event happens; and N is the number

of times that the event must repeat for the given time

window.

To create a monitoring rule the doctor must first se-

lect the type of rule, and then he can drag and drop the

graphical elements representing the events that must

happen in order to trigger the alert. The events are

matched together vertically for complex rules and hori-
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TN Event

Fig. 3 Graphical representation of an event

zontally for sequential rules. Last, he can configure the

parameters defining the event, and the message that

must be displayed if the alert is triggered.

Figure 4 shows the relation between the graphi-

cal representation and the temporal representation of

different rules that can be build with the web inter-

face. Figure 4(a) shows the simplest rule that can be

build, which is given as an illustrative example. This

rule states that an alert is triggered if there is a single

event of high blood pressure at time t0. However, the

web interface is intended to build complex and sequen-

tial monitoring rules involving several events. Figure

4(b) shows an example of a monitoring rule being com-

plex and sequential at the same time, as it involves just

one physiological parameter with a particular category.

This rule states that an alert is triggered if the patient

has two measurements of high blood pressure in a time

period of one day. Figure 4(c) shows an example of a

complex rule involving three events with two physiolog-

ical parameters. This rule states that an alert is trig-

gered when there are two events of high blood pressure

and one event of low glucose in a time period of one

day, where the time begins counting when the first of

the events happens. The web interface also allows the

user to create meta-rules. As shown in Figure 4(d) a

meta-rule is a rule composed with a rule. In this case

an alert is triggered if the pattern of events defined by

the previous rule repeats three times in a period of two

weeks.

2.3 Interactions between the different components

The management of a chronic illness like DM involves

the implication of at least two individuals: the patient

itself and the doctor in charge of the patient. When the

management is done through a PHS developed with

MAGPIE (Figure 1) there are also technological com-

ponents involved like agents, the agent environment,

sensors and web services. This section shows how pa-

tients, doctors and these components interact in order

to improve the patients’ quality of life.

2.3.1 Patient - system

The interactions between the different components of

the system for monitoring a patient are depicted in Fig-

ure 5. In particular, the figure shows the case where an

event produces an alert relevant for the doctor and the

patient. For the sake of clarity the figure shows only the

interactions when having one sensor and one agent, but

a patient can have multiple instances of these compo-

nents.

In the first place the patient activates the Android

application, and turns on the sensors used for the con-

tinuous monitoring. At this point the agent environ-

ment starts the execution of its life-cycle by waiting for

the reception of physiological measurements produced

by the sensors. The environment approach of waiting

for events rather than being continuously running is

intended to extend the battery of the device as much

as possible. Once the sensor measures a physiological

value, the context entity associated with the sensor en-

capsulates and forwards it to the environment’s queue

of events. The environment then activates all the agents

interested in that particular event acting thereby as

the mediator in the publish/subscribe pattern [15]. The

agent body is responsible for perceiving this event from

the environment and send it to its agent mind to eval-

uate if an alert has to be triggered. In the next step

the agent mind activates its internal cycle. First, it up-

dates its internal state with the event it just perceived.

Second, it tries to achieve its goals by revising the mon-

itoring rules defined for the patient. Finally, in the case

that the event triggers a particular rule, the agent cre-

ates an action representing the alert to be notified. This

action is thrown to the environment through the agent

body and notified to the patient through the graphical

user interface of the mobile application. The environ-

ment also forwards the alert to a context entity that

is responsible to redirect it to a web service located at

the hospital, so that it can be added to the electronic

health records of the patient and notified to the doctor.

2.3.2 Doctor - system

The rules for monitoring a patient are defined by the

doctor through a web interface as explained in the cor-

responding section. In order to use these rules, they

must be sent to the agents running in the MAGPIE

platform. Figure 6 shows the interactions between the

elements involved in this process. In Tier 3 when a new

set of monitoring rules are defined by the doctor, these

are stored in a local repository and are ready to be

downloaded by the monitoring application through a

web server. In Tier 2, a Rest client Context Entity is
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Fig. 4 Temporal and graphical representations of different monitoring rules
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Patient Sensor Environment MagpieAgent AgentMind Web Server

activation

sense sendEvent()
activateAgent()

perceiveEvent() updatePerception()

produceAction()

registerAction(alert)

registerAlert()

alert

update()

activation

Tier 1 Tier 2 Tier 3

notifyPatient()

Fig. 5 Interations taken place between the tiers of the system for patient monitoring

responsible for connecting with this web server and get-

ting the monitoring rules. The rules are then encapsu-

lated by the Context Entity as a rule set event and sent

to the Agent Environment’s queue of events for their

processing. Once the Environment is ready for process-

ing events, it activates the agents interested in that par-

ticular rule set, which is finally loaded into the agent’s

mind after the previous rule set has been discarded.

3 Knowledge representation

3.1 Agent mind cycle

Within MAGPIE agents have a mind cycle for perceiv-

ing, updating the internal state and then acting in the

agent environment following a reactive agent pattern.

The specification of the mind cycle is done as follows:

agent cycle(T )←
perceive(P, T ),

act(A, T ),

update(A, T ),

now(Tnew),

agent cycle(Tnew).

(1)

At each cycle, the agent perceives events P coming

from the environment, revises its knowledge base, de-

cides for an action A to be performed at time T, and

produces the action in the agent environment by push-

ing it to the agent body. In the next step the agent up-

dates the knowledge base with the knowledge of having

performed the action and starts a new cycle at time

Tnew. In more details, the perceive/2 predicate simply

asserts events in the agent mind to modify the model

that the agent has about the patient. The act/2 pred-

icate simply checks for alerts that hold in the agent

mind, and if these hold an action is produced. The

update/2 predicate is similar to the perceive/2 predi-

cate, but it rather asserts internal events, such as events

linked to actions performed in the agent environment.

3.2 Event calculus

The agent mind cycle uses the Event Calculus (EC) [25]

as the underlying formalism to deal with the events

produced in the agent environment. The EC is a for-
malism for representing actions and their effects, and

therefore it is suitable to model expert systems repre-

senting the evolution in time of an entity by means of

the production of events. In MAGPIE, the EC reasoner

is embedded inside an agent, and models the monitor-

ing rules applied by the medical doctors through the

web interface.

The EC is based on many-sorted first-order pred-

icate calculus, known as domain independent axioms,

which are represented as normal logic programs that

are executable in Prolog. The underlying time model

of the EC is linear. The EC manipulates fluents, where

a fluent represents a property which can have different

values over time. The term F=V denotes that the fluent

F has value V, as a consequence of an action that took

place at some earlier time-point and not terminated

by another action in the meantime. Table 1 summa-

rizes the main EC predicates used. Predicates, function

symbols and constants start with a lower-case letter,

while variables starts with an upper-case letter. Predi-
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Tier 2

RestClientContextEntity Environment MagpieAgent AgentMindWeb Server

Tier 3

Doctor

new rules
send rules

new rule set event
activate agent

perceive rule set event

remove old rule set

load new rule set

Fig. 6 Interations taken place for updating the monitoring rules

Predicate Meaning
initially(F=V) The value of fluent F

is V at time 0
holdsAt(F=V,T) The value of fluent F

is V at time T
holdsFor(F=V,[Tmin,Tmax]) The value of fluent F

is V between Tmin
and Tmax

initiatesAt(F=V,T) At time T the fluent F
is initiated to have
value V

terminatesAt(F=V,T) At time T the fluent F
is terminated from
having the value V

broken(F=V,[Tmin,Tmax]) The value of fluent F
is either terminated at
Tmax, or initiated to
a different value than
V between Tmin and
Tmax

happensAt(E,T) An event E takes place
at time T updating the
state of the fluents

Table 1 Main Event Calculus predicates used

cates are referenced as predicate/N, where predicate

is the name of the predicate and N the arity of the pred-

icate, i.e. its number of arguments.

The domain independent axioms of the EC are the

following

holdsAt(F = V, 0)← initiatially(F = V ) (2)

holdsAt(F = V, T )←
initiatesAt(F = V, Ts), Ts < T,

not broken(F = V, [Ts, T ])

(3)

Predicate (2) states that a fluent F holds value V

at time 0, if it has been initially set to this value. For

any other time T > 0, the predicate (3) states that the

fluent holds at time T if it has been initiated to value V

at some earlier time point, and it has not been broken

on the meanwhile.

broken(F = V, [Tmin, Tmax])←
terminatesAt(F = V, T ), Tmin < T, Tmax > T

(4)

broken(F = V1, [Tmin, Tmax])←
initiatesAt(F = V2, Ti), V1 6= V2,

Tmin < Ti, Tmax > Ti

(5)

Predicates (4) and (5) specify the conditions that

brake a fluent. Predicate (4) states that a fluent is bro-

ken between two time points Tmin and Tmax if within

this interval it has been terminated to have value V. Al-

ternatively, predicate (5) states that a fluent is broken

within a time interval if it has been initiated to hold a

different value.

holdsFor(F = V, [Tmin, Tmax])←
initiatesAt(F = V, Tmin),

terminiatesAt(F = V, Tmax),

not broken(F = V, [Tmin, Tmax])

(6)

holdsFor(F = V, [Tmin, infP lus])←
initiatesAt(F = V, Tmin),

not broken(F = V, [Tmin, infP lus])

(7)

holdsFor(F = V, [infMin, Tmax])←
terminatesAt(F = V, Tmax),

not broken(F = V, [infMin, Tmax])

(8)

Predicates (6), (7) and (8) deal with the validity in-

tervals of fluents. In particular, predicate (6) specifies

that a fluent F keeps value V for a time interval going

from Tmin to Tmax if nothing happens in the mid-

dle that breaks such an interval. Predicates (7) and (8)

behave in the same way, but deal with open intervals.
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01
HighvBloodv

Pressure

initiates_at(alert(high_blood_p)=message,vT)v:-
happens_at(Ev,vT),
Ev=blood_pressure(Systolic,Diastolic),
Systolicv≥v160,
Diastolic ≥ 100.

Fig. 7 Relations between the graphical representation of an
event and Prolog code in Event Calculus

The domain dependent predicates in EC are typ-

ically expressed in terms of the initiatesAt/2 and

terminatesAt/2 predicates. One example of a common

rule for initiatesAt/2 is

initatesAt(F = V, T )←
happensAt(Ev, T ),

Conditions[T ]

(9)

The above definition states that a fluent is initiated

to value V at time T if an event Ev happens at this

time point, and some optional conditions depending on

the domain are satisfied. In MAGPIE, these events that

must happen are physiological measurements from the

patient.

3.3 Relation between graphical rules and EC rules

To allow agents to produce alerts according to the rules

defined by the doctors, the graphical rules are converted

to Prolog predicates that are expressed in terms of EC

clauses. Figure 7 shows how the elements defined by an

event are linked to its Prolog representation. The moni-

toring rules are modeled using the initiates at/2 EC

predicate, which means that an alert of a particular

type is triggered at time T if the events defined in the

body rule happens. In the particular example in the Fig-

ure 7, an alert of type high blood p notifies a message, if

at time T there is a blood pressure measurement whose

systolic value is higher or equal to 160 mmHg and its

diastolic value is higher or equal to 100 mmHg.

In the case of having a monitoring rule with more

than one event, it can be derived from the previous ex-

ample that the different events can be nested taking

into account the time in which they happen. Thus, a

sequential rule of three events defining the glucose pat-

tern: high → low → high, in a time period of one day

is represented in Prolog as follows

initiatesAt(alert(glucose pattern) = message, T )←
happensAt(Ev1, T ev1),

happensAt(Ev2, T ev2),

happensAt(Ev3, T ev3),

Ev1 = glucose(V alue1),

Ev2 = glucose(V alue2),

Ev3 = glucose(V alue3),

V alue1 ≥ 8,

V alue2 ≤ 3.8,

V alue3 ≥ 8,

T ev3 > Tev2,

T ev2 > Tev1,

last day(Tev1, T ev3).

(10)

Where the predicate last day/2 computes if the

distance in time between the two arguments is less than

one day. Similar Prolog predicates exist for the different

time windows that can be specified in the web interface.

last day(Tev, Tfinal)←
T init is Tfinal− 24 ∗ 3600 ∗ 1000,

T ev ≤ Tfinal,

T ev ≥ T init.

(11)

However, this approach is not practical for defining

complex rules as a graphical rule composed with many

events will derive in a set of different EC predicates each

one corresponding to a temporal permutation of all the

events. To deal with this issue a more or equals to/2

predicate has been defined. This predicate counts the

number of facts in the knowledge base satisfying the

conditions defined in the second argument, and returns

true if it finds at least the same number of facts de-

fined in the first argument. As shown in Figure 8 this

predicate is used in the body of the initiates at/2

predicate to count the number of events satisfying the

defined conditions. In the example, an alert is triggered

if in the last day there were at least two blood pressure

events, whose systolic and diastolic values were higher

or equal to 160 mmHg and 100 mmHg respectively. The

definition of the predicate more or equals to/2 is as

follows

more or equals to(Number,Expr)←
findall( , Expr, List),

length(List, V al),

V al ≥ Number.

(12)

In the case of meta-rules, where the goal is to alert

the repetition of a particular pattern of events in a

given period of time, two different domain dependent

EC predicates are created: the inner part and the outer

part. The inner part, shown in Figure 9(a) represents a
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1qday2
HighqBloodq

Pressure

initiates_at.alert.high_blood_pressure)=message,qT)q:-
more_or_equals_to.2,.

happens_at.Ev,Tev),
Ev=blood_pressure.Systolic,Diastolic),
Systolicq≥q160,
Diastolicq≥q100,
last_day.Tev,T)

)).

Fig. 8 Use of the more or equals to/2 counting predicate in
a complex rule

single occurrence of the pattern defined, and the pred-

icate consists on the nesting of more or equals to/2

predicates. The outer part (Figure 9(b)) consists on

counting if the specified pattern of events happens at

least a certain number of times in the given time win-

dow. The counting is done with the more or equals to/2

predicate, where the event is an alert sent represent-

ing the inner part of the rule.

3.4 Specific DM rules

Observing blood glucose trends and patterns in diabetic

patients has been reported to be beneficial [41], as it can

help to address the cause of the problem. In here the

following patterns of interest have been selected

– Pattern 1: Brittle diabetes, defined as a glucose re-

bound going from less than 3.8 mmol/l to more than

8.0 mmol/l in a period of six hours

initiatesAt(alert(p1) = ’brittle diabetes’, T )←
happensAt(Ev1, T ev1),

happensAt(Ev2, T ev2),

Ev1 = glucose(V alue1),

Ev2 = glucose(V alue2),

V alue1 ≤ 3.8,

V alue2 ≥ 8,

T ev2 > Tev1,

last six hours(Tev1, T ev2).

(13)

– Pattern 2: Pre-hypertension, defined as two events

of high blood pressure in a period of one week.

initiatesAt(alert(p2) = ’pre-hypertension’, T )←
more or equals to(2, (

happens at(Ev1, T ev),

Ev1 = blood pressure(Sys,Dias),

Sys ≥ 130,

Dias ≥ 80,

last week(Tev, T ))).

(14)

– Pattern 3: Gaining weight, defined as going from a

2% weight lost to a 1% gain weight. This pattern is

dynamic for each patient, and for an initial weight

of 111.5 kg the thresholds are as follows.

initiatesAt(alert(p3) = ’gaining weight’, T )←
happensAt(Ev1, T ev1),

happensAt(Ev2, T ev2),

Ev1 = weight(V alue1),

Ev2 = weight(V alue2),

V alue1 ≥ 109.3,

V alue2 >= 110.4,

T ev2 > Tev1,

last week(Tev1, T ev2).

(15)

4 Evaluation

The evaluation of MAGPIE has been done in two differ-

ent ways. First, the ability of the system to detect com-

posite events on patients with diabetes type II has been

measured according to the rules specified in the previ-

ous section. Second, a series of simulations have been

conducted to determine how scalable is the MAGPIE

approach in comparison with a centralized approach.

4.1 Recognition of event patterns

A retrospective analysis on COMMODITY12 data has

been done for evaluating the ability of the system in

detecting patterns in real data. Table 2 summarizes the

statistics of the dataset. The dataset consists on 21 dia-

betic patients that used the sensors described in Section

2 during a period of six weeks approximately. The rows

in samples per day indicate how well the patients follow

the treatment. Ideally these values should be 1.71±1.89,

1±0, 1±0 for the glucose, blood pressure and weight re-

spectively.

Table 3 shows the results concerning the triggering

of the rules given the three previously presented se-

lected patterns. The interesting aspect of these results

is that given the patients data, the system is able to find

the patterns defined by the doctors. In particular the

selected patterns where rather simple and based on the
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1mday2
HighmBloodm

Pressure

1mday1 LowmGlucose

initiates_atDalertDandDhigh_blood_pressure4low_glucose66=message4mT6m:.
more_or_equals_toD24D

happens_atDEv14Tev164
Ev1=blood_pressureDSystolic14Diastolic164
Systolic1m≥m1604
Diastolic1m≥m1004
last_dayDTev14T6

664
more_or_equals_toD14D

happens_atDEv24Tev264
Ev2=glucoseDValue264
Value2m≤m44
last_dayDTev24T6

66.

(a) Nesting of events in a complex rule

2pweeks3

1pday2
HighpBloodp

Pressure

1pday1 LowpGlucose

initiates_atEalertEandErecursive,high_bp,low_g..=message,T.p:-
more_or_equals_toE3,E

happens_atEEv,Tev.,
Ev=alert_sentEandEhigh_blood_pressure,low_glucose..,
last_two_weeksETev,T.

...

(b) Meta-rule composed with the complex rule

Fig. 9 Examples of code produced for a complex rule and a meta-rule

Patient Days

Samples per Day (Mean±SD) Measurement (Mean±SD)

Glucose Blood Weight Glucose Sys. BP Dias. BP Weight
Pressure (mmol/l) (mmHg) (mmHg) (kg)

205 42 1.71±1.96 2.33±1.14 0.95±0.21 7.45±1.64 128.06±8.27 77.04±4.93 108.71±1.43
209 44 1.69±1.88 1.86±0.42 0.98±0.15 10.53±1.72 143.78±9.68 79.63±6.50 84.77±0.98
213 42 1.95±2.23 1.93±0.41 1.00±0.31 8.24±1.76 126.06±7.41 73.42±4.86 94.95±0.81
217 42 1.57±1.81 1.90±0.37 0.97±0.15 9.31±2.27 128.49±7.59 66.98±6.40 62.67±0.39
221 42 2.00±2.26 2.36±0.66 1.07±0.26 6.85±1.64 150.63±9.28 89.04±8.70 106.34±0.57
225 41 1.66±1.87 1.83±0.44 1.00±0.00 9.49±2.40 143.52±12.48 80.95±7.92 93.70±0.43
229 44 1.93±2.15 3.39±2.17 1.05±0.37 7.31±1.69 126.52±8.10 81.10±5.42 78.50±0.85
233 34 1.65±1.69 1.82±0.39 1.03±0.17 7.06±1.34 133.56±8.34 69.68±7.51 83.51±0.52
237 31 1.84±1.95 1.97±0.55 0.97±0.18 5.68±1.06 139.87±12.91 79.70±5.98 85.47±0.56
241 14 1.86±2.03 1.93±0.27 1.00±0.00 9.86±2.73 126.93±7.19 68.96±3.39 89.63±0.48
261 32 1.88±1.70 1.91±0.39 1.16±0.77 6.21±1.28 134.90±12.67 81.05±9.10 67.73±0.51
265 42 1.60±1.60 1.98±0.41 0.98±0.15 9.27±1.99 120.54±7.78 68.43±5.69 86.80±0.39
269 42 1.71±1.84 1.90±0.48 0.90±0.30 10.21±3.36 136.83±10.44 81.16±6.82 77.51±0.61
273 30 1.73±1.64 1.97±0.56 0.97±0.41 6.92±1.02 121.20±6.63 67.85±4.77 99.16±0.43
277 42 1.69±1.73 1.83±0.58 0.98±0.15 6.39±1.40 90.77±6.85 61.29±5.69 58.12±0.68
281 42 1.67±1.80 1.98±0.41 1.05±0.22 7.52±1.49 127.92±6.90 79.08±5.45 98.39±1.22
285 40 1.55±1.71 1.70±0.52 1.00±0.45 11.35±2.41 127.49±7.50 82.07±5.16 84.47±0.81
289 36 1.92±1.80 2.00±0.93 1.00±0.00 10.32±2.95 156.28±11.68 92.25±7.62 116.61±0.83
293 41 1.73±1.83 2.00±0.39 1.00±0.00 6.05±0.96 124.74±8.25 70.41±5.12 95.64±1.21
297 38 1.84±1.90 1.76±0.63 1.00±0.00 6.67±1.12 120.34±8.12 54.61±7.16 68.59±1.05
529 32 1.34±1.12 1.97±0.59 1.13±0.61 9.10±2.48 137.81±9.21 79.83±5.26 95.33±0.46

Table 2 Statistics describing the dataset
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Patient Pattern 1 Pattern 2 Pattern 3
205 0 19 0
209 0 44 0
213 0 4 0
217 0 0 6
221 0 86 5
225 0 38 0
229 0 41 0
233 0 7 0
237 0 27 3
241 2 0 0
261 0 35 4
265 0 0 0
269 0 39 0
273 0 0 0
277 0 0 9
281 0 19 17
285 0 12 0
289 0 67 11
293 0 0 0
297 0 0 20
529 0 25 0

Table 3 Detection of patterns in data

common practice of the medical doctors, so the system

could detect the entirety of the selected patterns. This

is significant because the ability to detect these patterns

allow medical doctors to modify the treatment of a se-

lected patient and thus the reaction time of the medical

doctors is more effective.

4.2 Scalability test

The typical approach to analyze the patient’s monitor-

ing data in PHSs is centralized, as it is all analyzed in

the Tier 3. In contrast, with MAGPIE the computation

to trigger the alerts is done in the Tier 2, so that it is

distributed among the patients’ smartphones. Thus, the

Tier 3 is free from doing this task, although the alerts

must be sent to Tier 3 to notify them to the doctor.

To measure the scalability of both approaches, a se-

ries of simulations have been realized using the Amazon

Web Services 2. To compare the performance of the two

approaches, eleven Amazon EC2 instances of the same

type t2.micro have been used. Ten instances for run-

ning the clients representing the patient’s base station

in Tier 2 and one for running the monitoring server in

Tier 3. Thus, in terms of hardware the clients and the

server are always identical for both approaches.

The simulations consists on distributing a certain

number of clients over the ten EC2 instances, which run

simultaneously performing the same operations. For the

simulation of the MAGPIE approach, each client runs

2 http://aws.amazon.com/
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Fig. 10 Latency when an alert composed by two events is
triggered

its own agent, which it is forced to trigger an alert com-

posed by two events and send it to the remote moni-

toring server. The server stores the alert in a repository

and sends back an acknowledge message to the client.

Whereas in the centralized approach, despite each client

having its own agent, all the agents run in the server. In

this approach, each client sends two events that force

its agent to trigger an alert that is first stored in a

repository and then notified back to the client as an

acknowledgement message. In both cases the latency is

measured as the elapsed time from the generation of

the first event until the client is notified with the ac-

knowledgment.

Figure 10 shows the results of the simulation, which

suggest that computation capabilities of smartphones

should be used in PHSs. While the MAGPIE approach

has a flat response at around 50 ms. from 50 to 200 si-

multaneous patients, the centralized approach increases

linearly with the number of patients. Moreover, when

the number of simultaneous patients is 250 patients

some clients experiences a timeout.

5 Related work

The work of this paper applies agent technology in

the domain of healthcare to monitor chronic patients

suffering from DM. Other heathcare systems also use

agents to perform different tasks like coordinating data

exchange between healthcare institutions [29,39], or to

support people in Ambient Assisted Living [6,27]. Other

systems and uses of agents in healthcare are reviewed

in [21].

In the context of PHSs, MADIP [36] is a relevant

work that is build on top of the JADE agent platform.

In this system, different kind of agents are used with the
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main purpose of monitoring vital signs and to inform

healthcare professionals when abnormal situations are

detected. However, the use of software for desktop com-

puters can limit the mobility of the patient. A similar

monitoring system is presented in [3] where data from

sensors is analyzed locally in a PDA but in the context

of arrhythmia detection. The monitoring rules used in

this system are inferred form classifiers and hard coded

in the PDA. Contrary, in MAGPIE rules are based on

the expertise of the medical doctor who can define and

change them at runtime. Rules for monitoring patients

are also used in [33], where a conceptual model of multi-

agent patient care management is described. The model

splits the medical knowledge between different agents,

however it is based on IF-THEN rules that do not have

the expressiveness of a logic programming approach.

In relation with DM monitoring some proposals com-

plement the application described in this paper by tar-

geting different goals. For example to help patients with

type 2 diabetes on achieving and maintaining healthy

lifestyles by estimating their daily calories balance [17].

A smartphone based system to asses diabetic patients

suffering from foot ulcers [42]; or an application to mon-

itor blood glucose levels and insulin injection, which

also suggests exercise goals [18].

A different approach to manage DM is referred as

the artificial pancreas [13]. This approach combines three

different elements to emulate the functionality of a real

pancreas: a continuous glucose monitoring (CGM) de-

vice, an insulin pump and an intelligent algorithm. Within

this context several algorithms have been proposed to

predict blood glucose levels in a given time horizon,

in order to calculate the right dose of insulin to be in-

jected by the insulin pump. These prediction algorithms

are based on different techniques like rules [12], artifi-

cial neural networks [32], proportional integral deriva-

tive controllers [28], and neuro-fuzzy techniques [45].

There are also algorithms focusing on denoising CGM

readings [16] that can help on improving the predic-

tion. The artificial pancreas as a method to manage

DM has the drawback that insulin pumps are invasive

devices which can cause skin infection and dermato-

logical changes at the site of infusion [37], and prob-

lems can occur with blocked, kinked or leaking cannu-

las [19]. Moreover, pumps do not send electronically to

the doctor injected insulin doses, so that the possibility

to adapt the treatment is limited by the times that the

doctor can visit the patient. Another issue with respect

CGM devices is that they provide glucose values mea-

sured in the interstitial fluid so there is a delay of about

ten minutes between the measurement and the plasma

glucose [23].

6 Conclusions

In this paper we presented an agent based distributed

PHS to monitor patients affected by chronic illnesses.

We evaluated the system with respect to its scalabil-

ity by comparing it with a centralised approach and we

evaluated its capability of detecting common pathologi-

cal patterns in patients affected by diabetes type 2. The

conclusion is that the best practice towards such sys-

tems is to move the reasoning on the mobile part of the

PHS, and to allow to modify the rules for the detection

of the pathological patterns at runtime. As future work

we plan to:

– model more infrequent pathological patterns;

– introduce prediction capabilities with predictive rules;

– create an interface for temporal rule learning.

Finally, from the medical side, we also plan to apply

this system on different physiological values and differ-

ent illnesses than diabetes type 2.
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