475 research outputs found

    First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence for Excess Emission at 3--8 microns

    Get PDF
    We present the first observations of magnetic cataclysmic variables with the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 μ\mum. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3--8 μ\mum region.Comment: Accepted to ApJ Letter

    HARMFULNESS OF Phomopsis diachenii Sacc. TO HERBS FROM Apiaceae FAMILY AND PREPARATIONS LIMITING THE GROWTH OF THIS FUNGUS

    Get PDF
    Abstract. Phomopsis diachenii belongs to the fungi increasingly noted on herbal plants from Apiaceae family. Considering the documented fungal pathogenicity for herbs, the possibility of limiting the growth and development of P. diachenii was studied. Two biotechnical preparations i.e. Biosept Active and Beta-chikol and 12 fungicides from different chemical groups as well as one isolate of P. diachenii K 651, obtained from caraway were used for the study. Tests were performed by poisoning the culture media with each of the tested preparations, which were then inoculated with the P. diachenii inoculum. The percentage of inhibition of the growth of four-and eight-day-old fungus colonies on the medium with preparations in comparison to the control colonies was a measure of the toxic activity of the preparations. The effectiveness of Beta-chikol in limiting P. diachenii growth was significantly higher than the efficiency of Biosept Active. All fungicides limited the growth and development of P. diachenii, and the effectiveness of inhibitory activity was correlated with the concentration of the active ingredient in fungicide. The most promising compound in reducing the growth and development of P. diachenii was mancozeb

    Inter-laminar shear stress in hybrid CFRP/austenitic steel

    Get PDF
    Bolted joints are the most common solution for joining composite components in aerospace structures. Critical structures such as wing to fuselage joints, or flight control surface fittings use bolted joining techniques. Recent research concluded that higher bearing strengths in composite bolted joints can be achieved by a CFRP/ Titanium hybrid lay-up in the vicinity of the bolted joint. The high costs of titanium motivate a similar research with the more cost competitive austenitic steel. An experimental program was performed in order to compare the apparent inter-laminar shear stress (ILSS) of a CFRP reference beam with the ILSS of hybrid CFRP/Steel beams utilizing different surface treatments in the metallic ply. The apparent ILSS was determined by short beam test, a three-point bending test. Finite element models using cohesive elements in the CFRP/Steel interface were built to simulate the short beam test in the reference beam and in the highest interlaminar shear stress hybrid beam. The main parameters for a FEM simulation of inter laminar shear are the cohesive elements damage model and appropriate value for the critical energy release rate. The results show that hybrid CFRP/Steel have a maximum ILSS very similar to the ILSS of the reference beam. Hybrid CFRP/Steel is a competitive solution when compared with the reference beam ILSS. FEM models were able to predict the maximum ILSS in each type of beam

    Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques

    Get PDF
    Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number) of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM), then characterized using phase contrast microscopy (PCM), a liquid suspension particle counter (LPC), and computer-controlled SEM (CCSEM). Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM) diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p < 0.001). This observation suggested that the smaller submicrometer size particles attached to the surface of larger particles and/or particle agglomerates detach in liquid, thereby shifting the particle size distribution downward. The GM diameters of the oxide materials were similar regardless of sizing technique, but observed differences were generally significant (p < 0.001). For oxides, aerodynamic cluster size will dictate deposition in the lung, but primary particle size may influence biological activity. The GM diameter of alloy particles determined using PCM became smaller with decreasing aerodynamic size fraction; however, when suspended in liquid for CCSEM and LPC analyses, GM particle size decreased by a factor of two (p < 0.001) suggesting that alloy particles detach in liquid. Detachment of particles in liquid could have significance for the expected versus actual size (and number) distribution of aerosol delivered to an exposure subject. Thus, a suite of complimentary analytical techniques may be necessary for estimating size distribution. Consideration should be given to thoroughly understanding the influence of any liquid vehicle which may alter the expected aerosol size distribution

    The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using "Age-related macular degeneration", "miRNA", "AMD biomarkers", "miRNA therapeutics" and "AMD pathogenesis" as keywords. Paper search was limited to articles published from 2011 to date. In the section "Retinal, circulating and vitreous body miRNAs found in human studies", we limited the search to studies with patients published in 2016-2021

    Report on the 2013 Rapid Assessment Survey of Marine Species at New England Bays and Harbors

    Get PDF
    Introduced species (i.e., non-native species that have become established in a new location) have increasingly been recognized as a concern as they have become more prevalent in marine and terrestrial environments (Mooney and Cleland 2001; Simberloff et al. 2005). The ability of introduced species to alter population, community, and ecosystem structure and function, as well as cause significant economic damage is well documented (Carlton 1989, 1996b, 2000; Cohen and Carlton 1995; Cohen et al. 1995; Elton 1958; Meinesz et al. 1993; Occhipinti-Ambrogi and Sheppard 2007; Pimentel et al. 2005; Thresher 2000). The annual economic costs incurred from managing the approximately 50,000 introduced species in the United States alone are estimated to be over $120 billion (Pimentel et al. 2005). Having a monitoring network in place to track new introductions and distributional changes of introduced species is critical for effective management, as these efforts may be more successful when species are detected before they have the chance to become established. A rapid assessment survey is one such method for early detection of introduced species. With rapid assessment surveys, a team of taxonomic experts record and monitor marine species–providing a baseline inventory of native, introduced, and cryptogenic (i.e., unknown origin) species (as defined by Carlton 1996a)–and document range expansions of previously identified species. Since 2000, five rapid assessment surveys have been conducted in New England. These surveys focus on recording species at marinas, which often are in close proximity to transportation vectors (i.e., recreational boats). Species are collected from floating docks and piers because these structures are accessible regardless of the tidal cycle. Another reason for sampling floating docks and other floating structures is that marine introduced species are often found to be more prevalent on artificial surfaces than natural surfaces (Glasby and Connell 2001; Paulay et al. 2002). The primary objectives of these surveys are to: (1) identify native, introduced, and cryptogenic marine species, (2) expand on data collected in past surveys, (3) assess the introduction status and range extensions of documented introduced species, and (4) detect new introductions. This report presents the introduced, cryptogenic, and native species recorded during the 2013 survey

    Efficient and effective assessment of deficits and their neural bases in stroke aphasia

    Get PDF
    ObjectiveMulti-assessment batteries are necessary for diagnosing and quantifying the multifaceted deficits observed post-stroke. Extensive batteries are thorough but impractically long for clinical settings or large-scale research studies. Clinically-targeted “shallow” batteries superficially cover a wide range of language skills relatively quickly but can struggle to identify mild deficits or quantify the impairment level. Our aim was to compare these batteries across a large group of chronic stroke aphasia and to test a novel data-driven reduced version of an extensive battery that maintained sensitivity to mild impairment, ability to grade deficits and the underlying component structure.MethodsWe tested 75 chronic left-sided stroke participants, spanning global to mild aphasia. The underlying structure of these three batteries was analysed using cross-validation and principal component analysis, in addition to univariate and multivariate lesion-symptom mapping.ResultsThis revealed a four-factor solution for the extensive and data-reduced batteries, identifying phonology, semantic skills, fluency and executive function in contrast to a two-factor solution using the shallow battery (language severity and cognitive severity). Lesion symptom mapping using participants’ factor scores identified convergent neural structures for phonology (superior temporal gyrus), semantics (inferior temporal gyrus), speech fluency (precentral gyrus) and executive function (lateral occipitotemporal cortex). The two shallow battery components converged with the phonology and executive function clusters. In addition, we show that multivariate models could predict the component scores using neural data, however not for every component.ConclusionsOverall, the data-driven battery appears to be an effective way to save time yet retain maintained sensitivity to mild impairment, ability to grade deficits and the underlying component structure observed in post-stroke aphasia

    Peak Width of Skeletonized Mean Diffusivity as a Marker of Diffuse Cerebrovascular Damage.

    Get PDF
    The peak width of skeletonized mean diffusivity (PSMD) has been proposed as a fully automated imaging marker of relevance to cerebral small vessel disease (SVD). We assessed PSMD in relation to conventional SVD markers, global measures of neurodegeneration, and cognition. 145 participants underwent 3T brain MRI and cognitive assessment. 112 were patients with mild cognitive impairment, Alzheimer's disease, progressive supranuclear palsy, dementia with Lewy bodies, or frontotemporal dementia. PSMD, SVD burden [white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), microbleeds, lacunes], average mean diffusivity (MD), gray matter (GM), white matter (WM), and total intracranial volume were quantified. Robust linear regression was conducted to examine associations between variables. Dominance analysis assessed the relative importance of markers in predicting various outcomes. Regional analyses examined spatial overlap between PSMD and WMH. PSMD was associated with global and regional SVD measures, especially WMH and microbleeds. Dominance analysis demonstrated that among SVD markers, WMH was the strongest predictor of PSMD. Furthermore, PSMD was more closely associated to WMH than with GM and WM volumes. PSMD was associated with WMH across all regions, and correlations were not significantly stronger in corresponding regions (e.g., frontal PSMD and frontal WMH) compared to non-corresponding regions. PSMD outperformed all four conventional SVD markers and MD in predicting cognition, but was comparable to GM and WM volumes. PSMD was robustly associated with established SVD markers. This new measure appears to be a marker of diffuse brain injury, largely due to vascular pathology, and may be a useful and convenient metric of overall cerebrovascular burden
    corecore