169 research outputs found

    Neuroacanthocytosis associated with a defect of the 4.1R membrane protein

    Get PDF
    BACKGROUND: Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. CASE PRESENTATION: All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 Β± 0.42) than in controls (4.41 Β± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. CONCLUSION: A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission

    A Comparison of the Conditioning Regimens BEAM and FEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma: An Observational Study on 1038 Patients From Fondazione Italiana Linfomi

    Get PDF
    Abstract Background Carmustine (BCNU)-Etoposide-Citarabine-Melphalan (BEAM) chemotherapy is the standard conditioning regimen for autologous stem cell transplantation (ASCT) in lymphomas. Owing to BCNU shortages, many centers switched to Fotemustine-substituted BEAM (FEAM), lacking proof of equivalence. Methods We conducted a retrospective cohort study in 18 Italian centers to compare safety and efficacy of BEAM and FEAM regimens for ASCT in lymphomas performed from 2008 to 2015. Results We enrolled 1038 patients (BEAM n=607, FEAM n=431), of which 27% had Hodgkin's lymphoma (HL), 14% indolent Non-Hodgkin's lymphoma (iNHL) and 59% aggressive NHL (aNHL). Baseline characteristics including age, sex, stage, B-symptoms, extranodal involvement, previous treatments, response before ASCT, overall conditioning intensity, were well balanced between BEAM and FEAM; notable exceptions were: ASCT year (median: BEAM=2011 vs FEAM=2013, p Conclusions BEAM and FEAM do not appear different in terms of survival and disease control. However, due to concerns of higher toxicity, Fotemustine substitution in BEAM does not seem justified, if not for easier supply

    Partial β€œtargeted” embolisation of brain arteriovenous malformations

    Get PDF
    The treatment of pial arteriovenous brain malformations is controversial. Little is yet known about their natural history, their pathomechanisms and the efficacy and risks of respective proposed treatments. It is known that only complete occlusion of the AVM can exclude future risk of haemorrhage and that the rates of curative embolisation of AVMs with an acceptable periprocedural risk are around 20 to 50%. As outlined in the present article, however, partial, targeted embolisation also plays a role. In acutely ruptured AVMs where the source of bleeding can be identified, targeted embolisation of this compartment may be able to secure the AVM prior to definitive treatment. In unruptured symptomatic AVMs targeted treatment may be employed if a defined pathomechanism can be identified that is related to the clinical symptoms and that can be cured with an acceptable risk via an endovascular approach depending on the individual AVM angioarchitecture. This review article gives examples of pathomechanisms and angioarchitectures that are amenable to this kind of treatment strategy

    Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study.

    Get PDF
    BACKGROUND: Much of the current literature on diet-colorectal cancer (CRC) associations focused on studies of single foods/nutrients, whereas less is known about nutrient patterns. We investigated the association between major nutrient patterns and CRC risk in participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: Among 477 312 participants, intakes of 23 nutrients were estimated from validated dietary questionnaires. Using results from a previous principal component (PC) analysis, four major nutrient patterns were identified. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed for the association of each of the four patterns and CRC incidence using multivariate Cox proportional hazards models with adjustment for established CRC risk factors. RESULTS: During an average of 11 years of follow-up, 4517 incident cases of CRC were documented. A nutrient pattern characterised by high intakes of vitamins and minerals was inversely associated with CRC (HR per 1 s.d.=0.94, 95% CI: 0.92-0.98) as was a pattern characterised by total protein, riboflavin, phosphorus and calcium (HR (1 s.d.)=0.96, 95% CI: 0.93-0.99). The remaining two patterns were not significantly associated with CRC risk. CONCLUSIONS: Analysing nutrient patterns may improve our understanding of how groups of nutrients relate to CRC

    Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression

    Get PDF
    From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-Ξ² and Wnt/Ξ²-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect
    • …
    corecore