92 research outputs found

    Relevance of copper and organic cation transporters in the activity and transport mechanisms of an anticancer cyclometallated gold(III) compound in comparison to cisplatin

    Get PDF
    The molecular mechanisms of toxicity and cellular transport of anticancer metallodrugs, including platinum-based agents, have not yet been fully elucidated. The aim of our study was to investigate the relevance of copper transporters (CTR1 and ATP7A/B), organic cation transporters (OCT2) and the multidrug and toxin extrusion proteins (MATE) in the intracellular accumulation of a novel organometallic cytotoxic Au(III) compound in cancer cells in comparison to cisplatin. Specifically, the synthesis and characterization of the gold complex [Au(py(b)-H)(PPh2Ar)Cl]PF6 (PPh2Ar = 3-[4-(diphenylphosphino)pheny]7-methoxy-2H-chromen-2-one] (1), featuring a coumarin ligand endowed with "smart" fluorescence properties, have been achieved. Initially, the cytotoxic effects of both cisplatin and 1 were studied in a small panel of human cancer cells, and against a non-tumorigenic cell line in vitro. Thus, the human ovarian cancer cell line A2780 and its cisplatin resistant variant A2780cisR, were selected, being most sensitive to the treatment of the gold complex. Co-incubation of the metallodrugs with CuCl2 (a CTR1 substrate) increased the cytotoxic effects of both the Au(III) complex and cisplatin; while co-incubation with cimetidine (inhibitor of OCT2 and MATE) showed some effect only after 72 h incubation. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) analysis of the cell extracts showed that co-incubation with CuCl2 increases Au and Cu accumulation in both cancer cell lines, in accordance with the enhanced antiproliferative effects. Conversely, for cisplatin, no increase in Pt content could be observed in both cell lines after co-incubation with either CuCl2 or cimetidine, excluding the involvement of CTR1, OCT2, and MATE in drug accumulation and overall anticancer effects. This result, together with the evidence for increased Cu content in A2780 cells after cisplatin co-treatment with CuCl2, suggests that copper accumulation is the reason for the observed enhanced anticancer effects in this cell line. Moreover, metal uptake studies in the same cell lines indicate that both 1 and cisplatin are not transported intracellularly by CTR1 and OCT2. Finally, preliminary fluorescence microscopy studies enabled the visualization of the sub-cellular distribution of the gold compound in A2780 cells, suggesting accumulation in specific cytosolic components/organelles

    Reduction in Urinary Arsenic with Bottled-water Intervention

    Get PDF
    The study was conducted to measure the effectiveness of providing bottled water in reducing arsenic exposure. Urine, tap-water and toenail samples were collected from non-smoking adults residing in Ajo (n=40) and Tucson (n=33), Arizona, USA. The Ajo subjects were provided bottled water for 12 months prior to re-sampling. The mean total arsenic (μg/L) in tap-water was 20.3±3.7 in Ajo and 4.0±2.3 in Tucson. Baseline urinary total inorganic arsenic (μg/L) was significantly higher among the Ajo subjects (n=40, 29.1±20.4) than among the Tucson subjects (n=32, 11.0±12.0, p<0.001), as was creatinine-adjusted urinary total inorganic arsenic (μg/g) (35.5±25.2 vs 13.2±9.3, p<0.001). Baseline concentrations of arsenic (μg/g) in toenails were also higher among the Ajo subjects (0.51±0.72) than among the Tucson subjects (0.17±0.21) (p<0.001). After the intervention, the mean urinary total inorganic arsenic in Ajo (n=36) dropped by 21%, from 29.4±21.1 to 23.2±23.2 (p=0.026). The creatinine-adjusted urinary total inorganic arsenic and toenail arsenic levels did not differ significantly with the intervention. Provision of arsenic-free bottled water resulted in a modest reduction in urinary total inorganic arsenic

    Relevance of Copper and Organic Cation Transporters in the Activity and Transport Mechanisms of an Anticancer Cyclometallated Gold(III) Compound in Comparison to Cisplatin

    Get PDF
    The molecular mechanisms of toxicity and cellular transport of anticancer metallodrugs, including platinum-based agents, have not yet been fully elucidated. The aim of our study was to investigate the relevance of copper transporters (CTR1 and ATP7A/B), organic cation transporters (OCT2) and the multidrug and toxin extrusion proteins (MATE) in the intracellular accumulation of a novel organometallic cytotoxic Au(III) compound in cancer cells in comparison to cisplatin. Specifically, the synthesis and characterization of the gold complex [Au(pyb-H)(PPh2Ar)Cl]PF6 (PPh2Ar = 3-[4-(diphenylphosphino)phenyl]-7-methoxy-2H-chromen-2-one] (1), featuring a coumarin ligand endowed with “smart” fluorescence properties, have been achieved. Initially, the cytotoxic effects of both cisplatin and 1 were studied in a small panel of human cancer cells, and against a non-tumorigenic cell line in vitro. Thus, the human ovarian cancer cell line A2780 and its cisplatin resistant variant A2780cisR, were selected, being most sensitive to the treatment of the gold complex. Co-incubation of the metallodrugs with CuCl2 (a CTR1 substrate) increased the cytotoxic effects of both the Au(III) complex and cisplatin; while co-incubation with cimetidine (inhibitor of OCT2 and MATE) showed some effect only after 72 h incubation. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) analysis of the cell extracts showed that co-incubation with CuCl2 increases Au and Cu accumulation in both cancer cell lines, in accordance with the enhanced antiproliferative effects. Conversely, for cisplatin, no increase in Pt content could be observed in both cell lines after co-incubation with either CuCl2 or cimetidine, excluding the involvement of CTR1, OCT2, and MATE in drug accumulation and overall anticancer effects. This result, together with the evidence for increased Cu content in A2780 cells after cisplatin co-treatment with CuCl2, suggests that copper accumulation is the reason for the observed enhanced anticancer effects in this cell line. Moreover, metal uptake studies in the same cell lines indicate that both 1 and cisplatin are not transported intracellularly by CTR1 and OCT2. Finally, preliminary fluorescence microscopy studies enabled the visualization of the sub-cellular distribution of the gold compound in A2780 cells, suggesting accumulation in specific cytosolic components/organelles

    On the toxicity and transport mechanisms of cisplatin in kidney tissues in comparison to a gold-based cytotoxic agent

    Get PDF
    Mechanisms of toxicity and cellular transport of anticancer metallodrugs, including platinum-based agents, have not yet been fully elucidated. Here, we studied the toxic effects and accumulation mechanisms of cisplatin in healthy rat kidneys ex vivo, using the Precision Cut Tissue Slices (PCTS) method. In addition, for the first time, we investigated the nephrotoxic effects of an experimental anticancer cyclometallated complex [Au(pyb-H)(PTA)Cl]PF6 (PTA = 1,3,5-triazaphosphaadamantane). The viability of the kidney slices after metallodrug treatment was evaluated by ATP content determination and histomorphology analysis. A concentration dependent decrease in viability of PCKS was observed after exposure to cisplatin or the Au(III) complex, which correlated with the increase in slice content of Pt and Au, respectively. Metal accumulation in kidney slices was analysed by ICP-MS. The involvement of OCTs and MATE transporters in the accumulation of both metal compounds in kidneys was evaluated co-incubating the tissues with cimitedine, inhibitor of OCT and MATE. Studies of mRNA expression of the markers KIM-1, villin, p53 and Bax showed that cisplatin damages proximal tubules, whereas the Au(III) complex preferentially affects the distal tubules. However, no effect of cimetidine on the toxicity or accumulation of cisplatin and the Au(III) complex was observed. The effect of temperature on metallodrug accumulation in kidneys suggests the involvement of a carrier-mediated uptake process, other than OCT2, for cisplatin; while carrier-mediated excretion was suggested in the cases of the Au(III) complex

    The use of ICPMS for stable isotope tracer studies in humans:A review

    No full text
    corecore