33 research outputs found

    Beam Misalignments and Fluid Velocities in Laser-Induced Thermal Acoustics

    Get PDF
    Beam misalignments and bulk fluid velocities can influence the time history and intensity of laser-induced thermal acoustics (LITA) signals. A closed-form analytic expression for LITA signals incorporating these effects is derived, allowing the magnitude of beam misalignment and velocity to be inferred from the signal shape. It is demonstrated how instantaneous, nonintrusive, and remote measurement of sound speed and velocity (Mach number) can be inferred simultaneously from homodyne-detected LITA signals. The effects of different forms of beam misalignment are explored experimentally and compared with theory, with good agreement, allowing the amount of misalignment to be measured from the LITA signal. This capability could be used to correct experimental misalignments and account for the effects of misalignment in other LITA measurements. It is shown that small beam misalignments have no influence on the accuracy or repeatability of sound speed measurements with LITA

    Atomistic phenomena in dense fluid shock waves

    Get PDF
    The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gase

    Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics

    Get PDF
    We study the accuracy and uncertainty of single-shot nonresonant laser-induced thermal acoustics measurements of the speed of sound and the thermal diffusivity in unseeded atmospheric air from electrostrictive gratings as a function of the laser power settings. For low pump energies, the measured speed of sound is too low, which is due to the influence of noise on the numerical data analysis scheme. For pump energies comparable to and higher than the breakdown energy of the gas, the measured speed of sound is too high. This is an effect of leaving the acoustic limit, and instead creating finite-amplitude density perturbations. The measured thermal diffusivity is too large for high noise levels but it decreases below the predicted value for high pump energies. The pump energy where the error is minimal coincides for the speed of sound and for the thermal diffusivity measurements. The errors at this minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically with signal intensity to 0.25% and 5%, respectively

    Non-contact boundary layer profiler using low-coherence self-referencing velocimetry

    Get PDF
    A spatially self-referencing velocimetry system based on low-coherence interferometry has been developed. The measurement technique is contactless and relies on the interference between back-reflected light from an arbitrary reference surface and seeding particles in the flow. The measurement location and the flow velocity are measured relative to the reference surface's location and velocity, respectively. Scanning of the measurement location along the beam direction does not require mechanical movement of the sensor head. The reference surface (which can move or vibrate relative to the sensor head) can be either an external object or the surface of a body over which measurements are to be performed. The absolute spatial accuracy and the spatial resolution only depend on the coherence length of the light source (tens of microns for a superluminescent diode). The prototype is an all-fiber assembly. An optical fiber of arbitrary length connects the self-contained optical and electronics setup to the sensor head. Proof-of-principle measurements in water (Taylor-Couette flow) and in air (Blasius boundary layer) are reported in this pape

    Laser-induced thermal acoustic velocimetry

    Get PDF
    Laser-Induced Thermal Acoustics (LITA) is a non-intrusive, remote, four-wave mixing laser diagnostic technique for measurements of the speed of sound and of the thermal diffusivity in gases. If the gas composition is known, then its temperature and density can be inferred. Beam misalignments and bulk fluid velocities can influence the time history and intensity of LITA signals. A closed-form analytic expression for LITA signals incorporating these effects is derived. The magnitude of beam misalignment and the flow velocity can be inferred from the signal shape using a least-squares fit of this model to the experimental data. High-speed velocimetry using homo dyne detection is demonstrated with NO_2-seeded air in a supersonic blow-down nozzle. The measured speed of sound deviates less than 2% from the theoretical value assuming isentropic quasi-1D flow. Boundary layer effects degrade the velocity measurements to errors of 20%. Heterodyne detection is used for low-speed velocimetry up to Mach number M = 0.1. The uncertainty of the velocity measurements was ~ 0.2 m/s. The sound speed measurements were repeatable to 0.5%. The agreement between theory and experiments is very good. A one-hidden-layer feed-forward neural network is trained using back-propagation learning and a steepest descent learning rule to extract the speed of sound and flow velocity from a heterodyne LITA signal. The effect of the network size on the performance is demonstrated. The accuracy is determined with a second set of LITA signals that were not used during the training phase. The accuracy is found to be better than that of a conventional frequency decomposition technique while being computationally as efficient. This data analysis method is robust with respect to noise, numerically stable, and fast enough for real-time data analysis. The accuracy and uncertainty of non-resonant LITA measurements is investigated. The error in measurements of the speed of sound and of the thermal diffusivity initially decreases with increasing signal intensity (excitation beam pulse energy) and increases again after passing a minimum. The location of the minimum error for the speed of sound and for the thermal diffusivity coincide. The errors at the minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically to 0.25% and 5%, respectively. The increased error for high excitation beam pulse energies results from finite-strength waves that cannot be treated using the linearized equations of motion

    Sound wave channelling in near-critical sulfur hexafluoride (SF₆)

    No full text
    Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal fluid columns of sulfur hexafluoride (SF6) under gravity using a semiempirical crossover equation of state. More than 40% of the emitted acoustic energy is channelled within a 20 mm high duct at 1 mK above the critical temperature. It is shown how, by changes in temperature, frequency, and gravitational strength, the governing length scales (wavelength, radius of ray curvature, and correlation length of the critical density fluctuations) can be varied. Near-critical fluids allow table-top sound channel experiments.ISSN:0001-4966ISSN:1520-852
    corecore