79 research outputs found

    Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications

    Get PDF
    In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C

    Universal Constraints on Low-Energy Flavour Models

    Get PDF
    It is pointed out that in a general class of flavour models one can identify certain universally present FCNC operators, induced by the exchange of heavy flavour messengers. Their coefficients depend on the rotation angles that connect flavour and fermion mass basis. The lower bounds on the messenger scale are derived using updated experimental constraints on the FCNC operators. The obtained bounds are different for different operators and in addition they depend on the chosen set of rotations. Given the sensitivity expected in the forthcoming experiments, the present analysis suggests interesting room for discovering new physics. As the highlights emerge the leptonic processes, μeγ\mu\rightarrow e\gamma, μeee\mu\rightarrow eee and μe\mu\rightarrow e conversion in nuclei.Comment: 18 pages, 3 figures; v2 matches published versio

    Incidence and Outcome of Invasive Fungal Diseases in Children With Hematological Malignancies and/or Allogeneic Hematopoietic Stem Cell Transplantation: Results of a Prospective Multicenter Study

    Get PDF
    Background:Available data on the incidence and outcome of invasive fungal diseases (IFD) in children with hematological malignancies or after allogeneic hematopoietic stem cell transplantation (HSCT) are mostly based on monocenter, retrospective studies or on studies performed prior to the availability of newer triazoles or echinocandins.Procedure:We prospectively collected clinical data on incidence, diagnostic procedures, management and outcome of IFD in children treated for hematological malignancies or undergoing HSCT in three major European pediatric cancer centers.Results:A total of 304 children (median age 6.0 years) who underwent 360 therapies (211 chemotherapy treatments, 138 allogeneic HSCTs and/or 11 investigational chemotherapeutic treatments) were included in the analysis. Nineteen children developed proven/probable IFD, mostly due to Aspergillus (n = 10) and Candida spp. (n = 5), respectively. In patients receiving chemotherapy, 11 IFDs occurred, all during induction or re-induction therapy. None of these patients died due to IFD, whereas IFD was lethal in 3 of the 8 HSCT recipients with IFD. Significant differences among centers were observed with regard to the use of imaging diagnostics and the choice, initiation and duration of antifungal prophylaxis.Conclusion:This prospective multicenter study provides information on the current incidence and outcome of IFD in the real life setting. Practice variation between the centers may help to ultimately improve antifungal management in children at highest risk for IFDs

    Facile purification and use of tobamoviral nanocarriers for antibody-mediated display of a two-enzyme system

    Get PDF
    Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.Deutsche Forschungsgemeinschaft (DFG: German Research Foundation)Nomad Bioscience GmbHGerman Research Foundation (DFG

    \u3ci\u3eSenecio Conrathii\u3c/i\u3e N.E.Br. (Asteraceae), a New Hyperaccumulator of Nickel from Serpentinite Outcrops of the Barberton Greenstone Belt, South Africa

    Get PDF
    Five nickel hyperaccumulators belonging to the Asteraceae are known from ultramafic outcrops in South Africa. Phytoremediation applications of the known hyperaccumulators in the Asteraceae, such as the indigenous Berkheya coddii Roessler, are well reported and necessitate further exploration to find additional species with such traits. This study targeted the most frequently occurring species of the Asteraceae on eight randomly selected serpentinite outcrops of the Barberton Greenstone Belt. Twenty species were sampled, including 12 that were tested for nickel accumulation for the first time. Although the majority of the species were excluders, the known hyperaccumulators Berkheya nivea N.E.Br. and B. zeyheri (Sond. & Harv.) Oliv. & Hiern subsp. rehmannii (Thell.) Roessler var. rogersiana (Thell.) Roessler hyperaccumulated nickel in the leaves at expected levels. A new hyperaccumulator of nickel was discovered, Senecio conrathii N.E.Br., which accumulated the element in its leaves at 1695 ± 637 µg g−1 on soil with a total and exchangeable nickel content of 503 mg kg−1 and 0.095 µg g−1, respectively. This makes it the third known species in the Senecioneae of South Africa to hyperaccumulate nickel after Senecio anomalochrous Hilliard and Senecio coronatus (Thunb.) Harv., albeit it being a weak accumulator compared with the latter. Seven tribes in the Asteraceae have now been screened for hyperaccumulation in South Africa, with hyperaccumulators only recorded for the Arctoteae and Senecioneae. This suggests that further exploration for hyperaccumulators should focus on these tribes as they comprise all six species (of 68 Asteraceae taxa screened thus far) to hyperaccumulate nickel

    Unbinned Deep Learning Jet Substructure Measurement in High Q2Q^2 ep collisions at HERA

    Get PDF
    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kTk_{\mathrm{T}} jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150Q^2>150 GeV2{}^2, and inelasticity 0.2<y<0.70.2 < y < 0.7. The analysis is also performed in sub-regions of Q2Q^2, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.Comment: 33 pages, 10 figures, 8 table
    corecore